Skip to main content

Use of Cosmid Libraries in Plant Transformations

  • Protocol
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 44))

  • 1172 Accesses

Abstract

Cosmid libraries are important tools for molecular analysis of plant genes because of their useful properties. Cosmids carry the cos site from the bacteriophage lambda (14); therefore, cosmid libraries have the advantage of being able to be packaged in vitro using commercially available highly efficient packaging extracts, just as lambda libraries can. The high efficiency of in vitro lambda packaging allows a cosmid library with large inserts to be more easily constructed than a simple plasmid library, which relies on transformation of competent Escherichia coli cells. In addition, cosmids contain an origin of replication for propagation in E. coli and possibly other bacteria. Since cosmids are propagated as plasmids, not as lambda phages, the genes for lambda reproduction are not needed; therefore, a cosmid vector can be much smaller than a lambda vector (Fig. 1). Since lambda phage packages about 37–53 kb of DNA (5), cosmids can have relatively large inserts of more than 40 kb, depending on vector sizes. Another advantage of cosmids is the ease with which to prepare the DNA because plasmid DNA is much more readily isolated than lambda phage DNA. Finally, the fact that cosmids are plasmids allows the recombinant molecules to be transferred from one bacterium to another through conjugation and from Agrobacterium to plant cells, as long as the necessary cis elements are present. Therefore, cosmid libraries offer a unique combination of very useful features, which make them important for many different molecular studies, including those of plant genes.

Comparison of lambda and cosmid clones. The vector for a lambda clone contains all of the genes required for the lytic life cycle of the lambda phage, including genes for phage DNA replication, for the phage structural proteins, and for lysis of E. coli cells. These genes are distributed in two regions, called left arm and right arm, usually about 20 and 9 kb in size, respectively. The lambda phage can package 37–53 kb; therefore, the insert sizes range from 8 kb (solid line) to 24 kb (solid and dashed lines). In contrast, cosmid clones propagate as plasmids, so the vector needs only to have a selectable marker (M) and an origin of replication (ori). So a cosmid vector can easily be less than 8 kb, allowing the inserts to be as long as 29 kb (solid line) to 45 kb (solid and dashed lines). Generally, a plasmid vector with a 400-bp fragment containing the cos site is a cosmid vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Emmons, S. W. (1974) Bacteriophage lambda derivatives carrying two copies of the cohesive end site. J. Mol. Biol. 83, 511–525.

    Article  PubMed  CAS  Google Scholar 

  2. Hohn, B. (1983) DNA sequences necessary for packaging of bacteriophage λ DNA. Proc. Natl. Acad. Sci. USA 80, 7456–7460.

    Article  PubMed  CAS  Google Scholar 

  3. Hohn, B. and Collins, J. (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11, 291–298.

    Article  PubMed  CAS  Google Scholar 

  4. Meyerowitz, E. M., Guild, G. M., Prestidge, L. S., and Hogness, D. S. (1980) A new high-capacity cosmid vector and its use. Gene 11, 271–282.

    Article  PubMed  CAS  Google Scholar 

  5. Feiss, M., Fisher, R. A., Crayton, M. A., and Egner, C. (1977) Packaging of the bacteriophage chromosome: the chromosome length. Virology 77, 281–293.

    Article  PubMed  CAS  Google Scholar 

  6. Nester, E. W., Gordon, M. P., Amasino, R. M., and Yanofsky, M. F. (1984) Crown gall: a molecular and physiological analysis. Annu. Rev. Plant Physiol. 35, 387–413.

    Article  CAS  Google Scholar 

  7. Klee, H. J., Horsch, R. B., and Rogers, S. G. (1987) Agrobacterium mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38, 467–486.

    Article  CAS  Google Scholar 

  8. Binns, A. N. and Thomashow, M. F. (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol. 42, 575–606.

    Article  CAS  Google Scholar 

  9. Zambryski, P., Tempe, J., and Schell, J. (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56, 193–201.

    Article  PubMed  CAS  Google Scholar 

  10. Raineri, D. M., Bottino, P., Gordon, M. P., and Nester, E. W. (1990) Agrobucterium-mediated transformation of rice (Oryza sativa L) Bio/Technology 8, 33–38.

    Article  CAS  Google Scholar 

  11. Hooykaas, P. J. J. and Schilperroort, R. A. (1992) Detection of monocot transformation via Agrobacterium tumefaciuns. Methods Enzymol. 216, 305–313.

    Google Scholar 

  12. Olszewski, N. E., Martin, F. B., and Ausubel, F. M. (1988) Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tobacum Nucleic Acids Res. 16, 10,765–10,781.

    Article  CAS  Google Scholar 

  13. Lazo, G. R., Stein, P. A., and Ludwig, R. A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9, 963–967.

    Article  PubMed  CAS  Google Scholar 

  14. Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77, 7347–7351.

    Article  PubMed  CAS  Google Scholar 

  15. Haughn, G. W. and Somerville, C. (1986) Sulfonylurea-resistant mutations of Arabidopsis thaliana. Mol. Gen. Genet. 204, 430–434.

    Article  CAS  Google Scholar 

  16. Ma, H., Yanofsky, M. F., Klee, H. J., Bowman, J. L., and Meyerowitz, E. M. (1992) Vectors for plant transformation and cosmid libraries. Gene 117, 161–167.

    Article  PubMed  CAS  Google Scholar 

  17. Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz, D. A., Flick, J. S., Fink, C. L., et al. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3, 629–635.

    Article  CAS  Google Scholar 

  18. Rogers, S. G., Horsch, R. B, and Fraley, R. T. (1986) Gene transfer in plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol. 118, 627–640.

    Article  CAS  Google Scholar 

  19. Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., and Schell, J. (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneratron capacity. EMBO J. 2, 2143–2150.

    PubMed  CAS  Google Scholar 

  20. Figurski, D. H. and Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function in trans. Proc. Natl. Acad. Sci. USA 76, 1648–1652.

    Article  PubMed  CAS  Google Scholar 

  21. Thomas, C. M. (1981) Complementatron analysis of replication of maintenance functions of broad host range plasmids RK2 and RP1. Plasmid 5, 277–291.

    Article  PubMed  CAS  Google Scholar 

  22. Konez, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric gene carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.

    Article  Google Scholar 

  23. Ma, H., Yanofsky, M. F., and Meyerowitz, E. M. (1990) Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 87, 3821–3825.

    Article  PubMed  CAS  Google Scholar 

  24. Ma, H., Yanofsky, M. F., and Meyerowitz, E. M. (1991) AGLI-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.

    Article  PubMed  CAS  Google Scholar 

  25. Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz, E. M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39.

    Article  PubMed  CAS  Google Scholar 

  26. Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20.

    PubMed  CAS  Google Scholar 

  27. Chang, C., Kwok, S. F., Bleecker, A. B., and Meyerowitz, E. M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539–544.

    Article  PubMed  CAS  Google Scholar 

  28. Bleecker, A. B., Estelle, M. A., Somerville, C., and Kende, H. (1988) A dominant mutation confers insensitivity to ehtylene in Arabidopsis thaliana. Science 241, 1086–1089.

    Article  PubMed  CAS  Google Scholar 

  29. Sun, T.-P., Goodman, H. M., and Ausubel, F. M. (1992) Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4, 119–128.

    Article  PubMed  CAS  Google Scholar 

  30. Herman, P. L. and Marks, M. D. (1989) Trichome development in Arabidopsis thaliana II Isolation and complementation of the GLABROUS1 gene. Plant Cell 1, 1051–1055.

    Article  PubMed  CAS  Google Scholar 

  31. Roe, J. L., Rivin, C. J, Sessions, R. A., Feldmann, K. A., and Zambryski, P. C. (1993) The TOUSLED gene in Arabidopsis thaliana encodes a protein kinase homologue that is required for leaf and flower development. Cell 75, 939–950.

    Article  PubMed  CAS  Google Scholar 

  32. Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H. M., and Somerville, C. R. (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258, 1353–1355.

    Article  PubMed  CAS  Google Scholar 

  33. Meyerowitz, E. M. and Pruitt, R. E. (1985) Arabidopsis thaliana and plant molecular genetics. Science 229, 1214–1218.

    Article  PubMed  CAS  Google Scholar 

  34. Meyerowitz, E. M. (1989) Arabidopsis, a useful weed. Cell 56, 263–269.

    Article  PubMed  CAS  Google Scholar 

  35. Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.

    Article  PubMed  CAS  Google Scholar 

  36. Pierce, J. C. and Sternberg, N. L. (1992) Using bacteriophage P1 system to clone high molecular weight genomic DNA Methods Enzymol. 216, 549–574.

    Article  PubMed  CAS  Google Scholar 

  37. Shizuya, H., Birren, B., Kim, U.-J, Mancino, V., Slepak, T., Tachiiri, Y., and Simon, M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797.

    Article  PubMed  CAS  Google Scholar 

  38. Evans, G. A., Snider, K., and Hermanson, G. G. (1992) Use of cosmids and arrayed clone libraries for genome analysis. Methods Enzymol. 216, 530–548.

    Article  PubMed  CAS  Google Scholar 

  39. Leyser, H. M. O., Lincoln, C. A., Timpte, C., Lammer, D., Turner, J., and Estelle, M. (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364, 161–164.

    Article  PubMed  CAS  Google Scholar 

  40. Lincoln, C., Britton, J. H., and Estelle, M. (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2, 1071–1080.

    Article  PubMed  CAS  Google Scholar 

  41. Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a nontissue culture approach. Mol. Gen Genet. 208, 1–9.

    Article  CAS  Google Scholar 

  42. Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Life Sci. (C. R. Acad. Sci. Paris), 316, in press.

    Google Scholar 

  43. Kreps, J. A. and Town, C. D. (1992) Isolation and characterization of a mutant of Arabidopsis thaliana resistant to α-methyltryptophan. Plant Physiol. 99, 269–275.

    Article  PubMed  CAS  Google Scholar 

  44. Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211, 266–271.

    Article  CAS  Google Scholar 

  45. Li, Z., Hayashimoto, A., and Murai, N. (1992) A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol. 100, 662–668.

    Article  PubMed  CAS  Google Scholar 

  46. Debener, T., Lehnackers, H., Arnold, M., and Dangl, J. (1991) Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1, 289–302.

    Article  PubMed  CAS  Google Scholar 

  47. Kunkel, B. N., Bent, A. F., Dahlbeck, D., Innes, R. W., and Staskawicz, B. J. (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5, 865–875.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ma, H. (1995). Use of Cosmid Libraries in Plant Transformations. In: Gartland, K.M.A., Davey, M.R. (eds) Agrobacterium Protocols. Methods in Molecular Biology™, vol 44. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-302-3:351

Download citation

  • DOI: https://doi.org/10.1385/0-89603-302-3:351

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-302-3

  • Online ISBN: 978-1-59259-531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics