Abstract
Cosmid libraries are important tools for molecular analysis of plant genes because of their useful properties. Cosmids carry the cos site from the bacteriophage lambda (1–4); therefore, cosmid libraries have the advantage of being able to be packaged in vitro using commercially available highly efficient packaging extracts, just as lambda libraries can. The high efficiency of in vitro lambda packaging allows a cosmid library with large inserts to be more easily constructed than a simple plasmid library, which relies on transformation of competent Escherichia coli cells. In addition, cosmids contain an origin of replication for propagation in E. coli and possibly other bacteria. Since cosmids are propagated as plasmids, not as lambda phages, the genes for lambda reproduction are not needed; therefore, a cosmid vector can be much smaller than a lambda vector (Fig. 1). Since lambda phage packages about 37–53 kb of DNA (5), cosmids can have relatively large inserts of more than 40 kb, depending on vector sizes. Another advantage of cosmids is the ease with which to prepare the DNA because plasmid DNA is much more readily isolated than lambda phage DNA. Finally, the fact that cosmids are plasmids allows the recombinant molecules to be transferred from one bacterium to another through conjugation and from Agrobacterium to plant cells, as long as the necessary cis elements are present. Therefore, cosmid libraries offer a unique combination of very useful features, which make them important for many different molecular studies, including those of plant genes.
Similar content being viewed by others
References
Emmons, S. W. (1974) Bacteriophage lambda derivatives carrying two copies of the cohesive end site. J. Mol. Biol. 83, 511–525.
Hohn, B. (1983) DNA sequences necessary for packaging of bacteriophage λ DNA. Proc. Natl. Acad. Sci. USA 80, 7456–7460.
Hohn, B. and Collins, J. (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11, 291–298.
Meyerowitz, E. M., Guild, G. M., Prestidge, L. S., and Hogness, D. S. (1980) A new high-capacity cosmid vector and its use. Gene 11, 271–282.
Feiss, M., Fisher, R. A., Crayton, M. A., and Egner, C. (1977) Packaging of the bacteriophage chromosome: the chromosome length. Virology 77, 281–293.
Nester, E. W., Gordon, M. P., Amasino, R. M., and Yanofsky, M. F. (1984) Crown gall: a molecular and physiological analysis. Annu. Rev. Plant Physiol. 35, 387–413.
Klee, H. J., Horsch, R. B., and Rogers, S. G. (1987) Agrobacterium mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38, 467–486.
Binns, A. N. and Thomashow, M. F. (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol. 42, 575–606.
Zambryski, P., Tempe, J., and Schell, J. (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56, 193–201.
Raineri, D. M., Bottino, P., Gordon, M. P., and Nester, E. W. (1990) Agrobucterium-mediated transformation of rice (Oryza sativa L) Bio/Technology 8, 33–38.
Hooykaas, P. J. J. and Schilperroort, R. A. (1992) Detection of monocot transformation via Agrobacterium tumefaciuns. Methods Enzymol. 216, 305–313.
Olszewski, N. E., Martin, F. B., and Ausubel, F. M. (1988) Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tobacum Nucleic Acids Res. 16, 10,765–10,781.
Lazo, G. R., Stein, P. A., and Ludwig, R. A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9, 963–967.
Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77, 7347–7351.
Haughn, G. W. and Somerville, C. (1986) Sulfonylurea-resistant mutations of Arabidopsis thaliana. Mol. Gen. Genet. 204, 430–434.
Ma, H., Yanofsky, M. F., Klee, H. J., Bowman, J. L., and Meyerowitz, E. M. (1992) Vectors for plant transformation and cosmid libraries. Gene 117, 161–167.
Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz, D. A., Flick, J. S., Fink, C. L., et al. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3, 629–635.
Rogers, S. G., Horsch, R. B, and Fraley, R. T. (1986) Gene transfer in plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol. 118, 627–640.
Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., and Schell, J. (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneratron capacity. EMBO J. 2, 2143–2150.
Figurski, D. H. and Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function in trans. Proc. Natl. Acad. Sci. USA 76, 1648–1652.
Thomas, C. M. (1981) Complementatron analysis of replication of maintenance functions of broad host range plasmids RK2 and RP1. Plasmid 5, 277–291.
Konez, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric gene carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.
Ma, H., Yanofsky, M. F., and Meyerowitz, E. M. (1990) Molecular cloning and characterization of GPA1, a G protein α subunit gene from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 87, 3821–3825.
Ma, H., Yanofsky, M. F., and Meyerowitz, E. M. (1991) AGLI-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495.
Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz, E. M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39.
Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20.
Chang, C., Kwok, S. F., Bleecker, A. B., and Meyerowitz, E. M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539–544.
Bleecker, A. B., Estelle, M. A., Somerville, C., and Kende, H. (1988) A dominant mutation confers insensitivity to ehtylene in Arabidopsis thaliana. Science 241, 1086–1089.
Sun, T.-P., Goodman, H. M., and Ausubel, F. M. (1992) Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4, 119–128.
Herman, P. L. and Marks, M. D. (1989) Trichome development in Arabidopsis thaliana II Isolation and complementation of the GLABROUS1 gene. Plant Cell 1, 1051–1055.
Roe, J. L., Rivin, C. J, Sessions, R. A., Feldmann, K. A., and Zambryski, P. C. (1993) The TOUSLED gene in Arabidopsis thaliana encodes a protein kinase homologue that is required for leaf and flower development. Cell 75, 939–950.
Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H. M., and Somerville, C. R. (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258, 1353–1355.
Meyerowitz, E. M. and Pruitt, R. E. (1985) Arabidopsis thaliana and plant molecular genetics. Science 229, 1214–1218.
Meyerowitz, E. M. (1989) Arabidopsis, a useful weed. Cell 56, 263–269.
Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.
Pierce, J. C. and Sternberg, N. L. (1992) Using bacteriophage P1 system to clone high molecular weight genomic DNA Methods Enzymol. 216, 549–574.
Shizuya, H., Birren, B., Kim, U.-J, Mancino, V., Slepak, T., Tachiiri, Y., and Simon, M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797.
Evans, G. A., Snider, K., and Hermanson, G. G. (1992) Use of cosmids and arrayed clone libraries for genome analysis. Methods Enzymol. 216, 530–548.
Leyser, H. M. O., Lincoln, C. A., Timpte, C., Lammer, D., Turner, J., and Estelle, M. (1993) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364, 161–164.
Lincoln, C., Britton, J. H., and Estelle, M. (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2, 1071–1080.
Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a nontissue culture approach. Mol. Gen Genet. 208, 1–9.
Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Life Sci. (C. R. Acad. Sci. Paris), 316, in press.
Kreps, J. A. and Town, C. D. (1992) Isolation and characterization of a mutant of Arabidopsis thaliana resistant to α-methyltryptophan. Plant Physiol. 99, 269–275.
Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211, 266–271.
Li, Z., Hayashimoto, A., and Murai, N. (1992) A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol. 100, 662–668.
Debener, T., Lehnackers, H., Arnold, M., and Dangl, J. (1991) Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1, 289–302.
Kunkel, B. N., Bent, A. F., Dahlbeck, D., Innes, R. W., and Staskawicz, B. J. (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5, 865–875.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1995 Humana Press Inc., Totowa, NJ
About this protocol
Cite this protocol
Ma, H. (1995). Use of Cosmid Libraries in Plant Transformations. In: Gartland, K.M.A., Davey, M.R. (eds) Agrobacterium Protocols. Methods in Molecular Biology™, vol 44. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-302-3:351
Download citation
DOI: https://doi.org/10.1385/0-89603-302-3:351
Publisher Name: Springer, Totowa, NJ
Print ISBN: 978-0-89603-302-3
Online ISBN: 978-1-59259-531-0
eBook Packages: Springer Protocols