Advertisement

Single-Cell Calcium Imaging

  • Katrina A. Marsh
Part of the Methods in Molecular Biology™ book series (MIMB, volume 41)

Abstract

It is widely accepted that calcium ions are the primary regulators of smooth muscle contraction and relaxation; however, the mechanisms by which changes in intracellular calcium ion concentration ([Ca2+ 1) are obtained within the cell are incompletely understood. Increases in ([Ca2+ 1) can be mediated either via a release of calcium from intracellular stores (1, 2, 3) or via an influx of calcium ions from the extracellular fluid (4, 5).

Keywords

Image Memory Excitation Efficiency Lens Tissue Tracheal Smooth Muscle Cell Bovine Tracheal Smooth Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Somlyo, A. P, Walker, J. W., Goldman, Y. E., Trentham, D. R., Kobayashi, S., Kitazawa, T., and Somlyo, A. V. (1988) Inositol triphosphate, calcium and muscle contraction. Phil. Trans. R. Soc. Lond. B. 320, 399–404.CrossRefGoogle Scholar
  2. 2.
    Berridge, M. J. and Irvine, R. F. (1989) Inositol phosphates and cell signalling. Nature 341, 197–205PubMedCrossRefGoogle Scholar
  3. 3.
    Irvine, R. F (1990) “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett. 263, 5–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Benham, C. D. and Tsien, R. W. (1987) A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328, 275–278.PubMedCrossRefGoogle Scholar
  5. 5.
    Murray, R. K. and Kothkoff, M. I. (1991) Receptor-activated calcium influx in human airway smooth muscle cells. J. Physiol. 435, 123–144.PubMedGoogle Scholar
  6. 6.
    Takuwa, Y., Takuwa, N., and Rasmussen, H. (1987) Measurements of cytoplasmic-free Ca2+ concentration in bovine tracheal smooth muscle using aequorin. Am. J. Physiol. 253, C817–C827.PubMedGoogle Scholar
  7. 7.
    Felbel, J., Trockur, B., Ecker, T., Landgraf, W., and Hofmann, F. (1988) Regula-tion of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle from bovine trachea. J. Biol. Chem 263, 16,764–16,771PubMedGoogle Scholar
  8. 8.
    Cheek, T. R., Jackson, T. R., O’Sullivan, A. J., Moreton, R. B., Berndge, M. J., and Burgoyne, R. D. (1989) Simultaneous measurement of cytosolic calcium and secretion in single bovine adrenal chromaffin cells by fluorescent imaging of Fura-2 in cocultured cells. J. Cell Biol. 109, 1219–1227.PubMedCrossRefGoogle Scholar
  9. 9.
    Neylon, C. B., Hoyland, J., Mason, W., and Irvine, R. F. (1990) Spatial dynamics of intracellular calcium in agonist-stimulated vascular smooth muscle cells. Am. J Physiol. 259, C657–C686.Google Scholar
  10. 10.
    Marsh, K. A. and Hill, S. J. (1993) Characteristics of the bradykinin-induced changes in intracellular calcium ion concentration of single bovine tracheal smooth muscle cells. Br. J. Pharmacol. 110, 29–35PubMedGoogle Scholar
  11. 11.
    Grynkicwicz, G., Poenie, M., and Tsien, R Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence indicators. J. Biol. Chem. 260, 3440–3450.Google Scholar
  12. 12.
    Moore E. D. W., Becker, P. L., Fogarty, K. E., Williams, D. A., and Fay, F. S. (1990) Calcium imaging in single living cells: theoretical and practical issues. Cell Calcium 11, 157–179.PubMedCrossRefGoogle Scholar
  13. 13.
    Roe, M. W., Lemasters, J. J., and Herman, B. (1990) Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium 11, 63–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Marsh, K. A. and Hill, S. J. (1992) Bradykinin B2 receptor-mediated phosphoinositide hydrolysis in bovine cultured tracheal smooth muscle cells. Br. J. Pharmacol. 107, 443–447.PubMedGoogle Scholar

Copyright information

© Humana Press Inc , Totowa, NJ 1995

Authors and Affiliations

  • Katrina A. Marsh
    • 1
  1. 1.Department of Physiology and PharmacologyQueen’s Medical CentreNottinghamUK

Personalised recommendations