Skip to main content

Ligase Chain Reaction

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 46))

Abstract

The ability to detect low numbers of DNA target sequences has been greatly enhanced by the development of geometric amplification techniques, most of which employ enzymatic methods to replicate a target DNA or RNA sequence in an autocatalytic fashion. These techniques have become so widely used that a new journal, PCR Methods and Applications, has arisen in an attempt to consolidate literature relevant to polymerase chain reactions (PCR) (1) and other amplification technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Saiki, R. K., Schraf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  2. Backman, K. C. and Wang, C.-N. J. (1989) Method for Detecting a Target Nucleic Acid Sequence. European Patent Office #A2 0 320 308.

    Google Scholar 

  3. Royer, G. P., Cruickshank, K. A., and Morrison, L. E. (1989) Template-Directed Photoligation. European Patent Office #A2 0 324 616.

    Google Scholar 

  4. Wallace, B. R. (1989) Method of Amplifying and Detecting Nucleic Acid Sequences. European Patent Office #A2 0 336 731.

    Google Scholar 

  5. Wu, D. Y. and Wallace, R. B. (1989) The ligation amplification reaction (LAR): amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4, 560–569.

    Article  PubMed  CAS  Google Scholar 

  6. Orgel, L. E. (1989) Ligase Based Amplification Method. World Intellectual Property Organization #WO 89/09835.

    Google Scholar 

  7. Richards, R. M. and Jones, T. (1989) Method and reagents for detecting nucleic acid sequences. World Intellectual Property Organization, WO 89/12696.

    Google Scholar 

  8. Bond, S., Carrino, J., Hampl, H., Hanley, K., Rinehardt, L., and Laffler, T. (1990) New methods of detection of HPV, in Papillomaviruses in Human Pathology: Recent Progress in Epidermoid Precancers, vol. 78 (Monsonego, J., ed.), Raven, Paris.

    Google Scholar 

  9. Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193.

    Article  PubMed  CAS  Google Scholar 

  10. Barringer, K., Orgel, L., Wahl, G., and Gingeras, T. R. (1990) Blunt-end and single-stranded ligations by Escherichia coli ligase: influence on an in vitro amplification scheme. Gene 89, 117–122.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi, M. and Uchida, T. (1986) Thermophilic HB8 DNA ligase: effects of polyethylene glycols and polyamines on blunt-end ligation of DNA. J. Biochem. 100, 123–131.

    PubMed  CAS  Google Scholar 

  12. Wetmur, J. G. and Davidson, N. (1968) Kinetics of renaturation of DNA. J. Mol. Biol. 31, 349–370.

    Article  PubMed  CAS  Google Scholar 

  13. Wu, R., Wu, N.-H., Hanna, Z., Georges, F., and Narang, S. (1984) Purification and sequence analysis of synthetic oligodeoxyribonucleotides, in Oligonucleotide Synthesis: A Practical Approach (Gait, M. J., ed.), IRL Press, Oxford, UK, pp. 135–151.

    Google Scholar 

  14. Ikuta, S., Chattopadhyaya, R., and Dickerson, R. E. (1984) Reverse-phase polystyrene column for purification and analysis of DNA oligomers. Anal. Chem. 56, 2253–2256.

    Article  PubMed  CAS  Google Scholar 

  15. Backman, K. C., Rudd, E. A., Lauer, G., and McKay, D. (1990) Isolating Thermostable Enzymers. European Patent Office #A2 0 373 962.

    Google Scholar 

  16. Lauer, G., Rudd, E. A., McKay, D. L., Ally, A., Ally, D., and Backman, K. C. (1991) Cloning, nucleotide sequence, and engineered expression of Thermusthermophilus DNA ligase, a homolog of Escherichia coli DNA ligase. J. Bacteriol. 173, 5047–5053.

    PubMed  CAS  Google Scholar 

  17. Barany, F. and Gelfand, D. H. (1991) Cloning, overexpression and nucleotide sequence of a thermostable DNA ligase-encoding gene. Gene 109, 1–11.

    Article  PubMed  CAS  Google Scholar 

  18. Tu, C.-P. D. and Cohen, S. N. (1980) 3′-End labeling of DNA with [α-32P]cordycepin-5′-triphosphate. Gene 10, 177–183.

    Article  PubMed  CAS  Google Scholar 

  19. Kwok, S. and Higuchi, R. (1989) Avoiding false positives with PCR. Nature 339, 237–238.

    Article  PubMed  CAS  Google Scholar 

  20. Sarkar, G. and Sommer, S. S. (1990) Shedding light on PCR contamination. Nature 343, 27.

    Article  PubMed  CAS  Google Scholar 

  21. Kitchin, P. A., Szotyroi, Z., Fromholc, C., and Almond, N. (1990) Avoidance of false positives. Nature 344, 201.

    Article  PubMed  CAS  Google Scholar 

  22. Sarkar, G. and Sommer, S. S. (1991) Parameters affecting susceptibility of PCR contamination to UV inactivation. Biotechniques 10, 589–594.

    Google Scholar 

  23. Schildkraut, C. and Lifson, S. (1965) Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3, 195–208.

    Article  PubMed  CAS  Google Scholar 

  24. Breslauer, K. J., Frank, R., Blocker, H., and Marky, L. A. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750.

    Article  PubMed  CAS  Google Scholar 

  25. Frier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H. (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. 83, 9373–9377.

    Article  Google Scholar 

  26. Fasman, G. D. (ed.) (1975) Handbook of Biochemistry and Molecular Biology, Vol. I: Nucleic Acids. CRC, Cleveland, OH.

    Google Scholar 

  27. Studier, F. W. (1969) Conformational changes of single stranded DNA. J. Mol. Biol. 41, 189–197.

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi, M., Yamaguchi, E., and Uchida, T. (1984) Thermophilic DNA ligase. J. Biol. Chem. 259, 10,041–10,047.

    PubMed  CAS  Google Scholar 

  29. Barker, D. G., Johnson, A. L., and Johnson, L.H. (1985) An improved assay for DNA ligase reveals temperature-sensitive activity in cdc9 mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 200, 458–462.

    Article  PubMed  CAS  Google Scholar 

  30. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Shimer, G.H., Backman, K.C. (1995). Ligase Chain Reaction. In: Howard, J., Whitcombe, D.M. (eds) Diagnostic Bacteriology Protocols. Methods in Molecular Biology™, vol 46. Humana Press. https://doi.org/10.1385/0-89603-297-3:269

Download citation

  • DOI: https://doi.org/10.1385/0-89603-297-3:269

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-297-2

  • Online ISBN: 978-1-59259-533-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics