Skip to main content

Automatic Karyotype Analysis

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 29))

Abstract

This chapter differs from the majority in this book in that its subject matter is the application of computer image interpretation techniques to the analysis of metaphase chromosome spreads. Were we to follow the prescription of the remainder of the book, we might simply publish the code of a computer program together with a list of suitable equipment. This is not, however, a realistic option. The computer programs in current commercial systems for automated cytogenetics typically consist of approximately 100,000 lines of source code; in the case of automatic metaphase finders, the equipment may include proprietary mechanical or electronic components. Also, the rate of change in the performance and cost of cameras, displays, and computers are such that any list of equipment that is appropriate as we write in mid1991 would most likely be nearing obsolescence by the time the book is published.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Piper J. and Rutovitz D. (1985) Data structures for image processing in a C language and Unix environment Patt. Recog. Letts. 3, 119–129.

    Article  Google Scholar 

  2. Graham J., Taylor, C J., Cooper, D H, and Dixon, R N (1986) A compact set of image processing primitives and their role in a successful application program Patt Recog Letts 4, 325–333.

    Article  Google Scholar 

  3. Korthof, G. and Carothers, A. D (1991) Tests of performance of four automatic metaphase finding and karyotyping systems Clin Genet. 40, 441–451.

    Article  PubMed  CAS  Google Scholar 

  4. Castleman, K. R (1992) The PSI automatic metaphase finder. J. Radiation Research, 33(suppl.), 124–128.

    Article  Google Scholar 

  5. Martin, A. O. (1985) My life with two automated systems. Automated Chromosome Analysis Workshop, Leiden

    Google Scholar 

  6. Daker, M (1985) The detection of chromosome abnormalities using Magiscan 2 Automated Chromosome Analysis Workshop, Leiden

    Google Scholar 

  7. Piper, J and Granum, E. (1989) On fully automatic feature measurement for banded chromosome classification. Cytometry 10, 242–255.

    Article  PubMed  CAS  Google Scholar 

  8. Lloyd, D., Piper, J., Rutovitz, D, and Shippey, G. (1987) Multiprocessing interval processor for automated cytogenetics. Appl. Optics 26, 3356–3366.

    Article  CAS  Google Scholar 

  9. Graham, J (1987) Automation of routine clinical chromosome analysis I Karyotyping by machine Anal Quant. Cytol. Histol. 9, 383–390.

    PubMed  CAS  Google Scholar 

  10. Graham, J (1989) Resolution of composites in interactive karyotyping, in (Lundsteen, C and Piper, J, eds.) Automation of Cytogenetics Springer-Verlag, Berlin, pp 191–203

    Google Scholar 

  11. Shippey, G, Carothers, A. D., and Gordon, J. (1986) Operation and performance of an automatic metaphase finder based on the MRC fast interval processor J Histochem. Cytochem. 34, 1245–1252.

    PubMed  CAS  Google Scholar 

  12. Graham, J. and Pycock, D. (1987) Automation of routine clinical chromosome analysis. II Metaphase finding Anal. Quant. Cytol Histol. 9, 391–397.

    PubMed  CAS  Google Scholar 

  13. Serra, J (1982) Image Analysis and Mathematical Morphology. Academic, London, UK

    Google Scholar 

  14. Groen, F C A, Young, I T, and Ligthart, G (1985) A comparison of different focus functions for use in autofocus algorithms Cytometry 6, 81–91.

    Article  PubMed  CAS  Google Scholar 

  15. Firestone, L., Cook, K., Culp, K., Talsania, N., and Preston, K. (1991) Comparison of autofocus methods for automated microscopy Cytometry 12, 195–206

    Article  PubMed  CAS  Google Scholar 

  16. Vrolijk, J., Sloos, W C. R., Verwoerd, N. P., and Tanke, H. J. (1991) A Macintosh based system for metaphase finding. Poster contribution to EC Concerted Action on Automated Cytogenetics Workshop, Leiden, September 2–3.

    Google Scholar 

  17. van Vhet, L J, Young, I T, and Mayall, B H (1990) The Athena semiautomated karyotyping system Cytometry 1, 51–58

    Google Scholar 

  18. Groen, F. C A., ten Kate, T. K, Smeulders, A. W. M, and Young, I. T. (1989) Human chromosome classification based on local band descriptors Patt Recog. Letts. 9, 211–222

    Article  Google Scholar 

  19. Rutovitz, D. (1975) An algorithm for in-line generation of a convex cover Computer Graphics Image Processing 4, 74–78.

    Article  Google Scholar 

  20. Piper, J. and Lundsteen, C. (1987) Human chromosome analysis by machine. Trends in Genet 3, 309–313.

    Article  Google Scholar 

  21. Groen, F. C, Verbeek, P. W, Zee, G. A., and Oosterlinck, A. (1976) Some aspects concerning computation of chromosome banding profiles, in Proceedings of the 3rd International Joint Conference on Pattern Recognition, Coronado, CA, pp 547–550.

    Google Scholar 

  22. Piper, J. (1981) Finding chromosome centromeres using boundary and density information, in Digital Image Processing. (Simon, J-C and Haralick, R M, eds.) D. Reidel, Dordrecht, Netherlands, pp 511–518

    Google Scholar 

  23. Granum, E. (1982) Application of statistical and syntactical methods of analysis and classification to chromosome data, in Pattern Recognition Theory and Applications. (Kittler, J., Fu, K. S., and Pau, L F eds) NATO ASI (Oxford 1981), Reidel, Dordrecht, pp. 373–398.

    Google Scholar 

  24. Caspersson, T., Lomakka, G., and Moler, A. (1971) Computerised chromosome identification by aid of the quinacnne mustard fluorescence technique Hereditas 67, 103–109.

    Article  Google Scholar 

  25. Thomason, M. G and Granum, E (1986) Dynamic programming inference of markov networks from finite sets of sample strings. IEEE-Transactions on Pattern Analysis and Machine Intelligence (PAMI) 8, 491–501.

    Article  Google Scholar 

  26. Devijver, P A. and Kittler, J (1982) Pattern Recognition, A Statistical Approach Prentice-Hall International, London, UK.

    Google Scholar 

  27. Duda, R. O. and Hart, P. E. (1973) Pattern Recognition and Scene Analysis. Wiley, New York

    Google Scholar 

  28. Piper, J. (1987) The effect of zero feature correlation assumption on maximum likelihood based classification of chromosomes Sign Proces. 12, 49–57.

    Article  Google Scholar 

  29. Kirby, S. P. J., Theobald, C. M., Piper, J, and Carothers, A. (1991) Some methods of combining class information in multivariate normal discrimination for the classification of human chromosomes. Statistics in Medicine 10, 141–149

    Article  PubMed  CAS  Google Scholar 

  30. Lundsteen, C, Gerdes, T., and Maahr, J (1986) Automatic classification of chromosomes as part of a routine system for clinical analysis. Cytometry 7, 1–7.

    Article  PubMed  CAS  Google Scholar 

  31. Piper, J. (1992) Variability and bias in experimentally measured classifier error rates. Patt. Recog. Letts 13, 685–692

    Article  Google Scholar 

  32. Piper, J. (1986) Classification of chromosomes constrained by expected class size. Patt. Recog. Letts. 4, 391–395.

    Article  Google Scholar 

  33. Tso, M. K S. and Graham, J. (1983) The transportation algorithm as an aid to chromosome classification. Patt Recog Letts. 1, 489–496

    Article  Google Scholar 

  34. Tso, M, Kleinschmidt, P, Mittereiter, I, and Graham, J. (1991) An efficient transportation algorithm for automatic chromosome karyotyping. Patt. Recog. Letts. 12, 117–126.

    Article  Google Scholar 

  35. Zimmerman, S. O., Johnston, D A, Arrighi, F. E., and Rupp, M E (1986) Automated homologue matching of human G-banded chromosomes Comput Biol. Med 16, 223–233.

    Article  PubMed  CAS  Google Scholar 

  36. Piper, J, Carothers, A., and Guest, E (1991) Chromosome classification incorporating similarity constraints. Digest of the World Congress on Medical Physics and Biomedical Engineering, Kyoto, Japan, 1991, Medical and Biological Engineering and Computing 29(suppl), 221.

    Google Scholar 

  37. Wu, Q., Snellings, J, Amory, L., Suetens, P., and Oosterlinck, A (1989) Model-based contour analysis in a chromosome segmentation system, in Automation of Cytogenetics, (Lundsteen, C. and Piper, J, eds,) Springer-Verlag, Berlin, pp. 217–229.

    Google Scholar 

  38. Vossepoel, A M. (1989) Separation of touching chromosomes in Automation of Cytogenetics, (Lundsteen, C. and Piper, J, eds) Springer-Verlag, Berlin, pp. 205–216.

    Google Scholar 

  39. Ji, L (1989) Intelligent splitting in the chromosome domain Patt. Recog 22, 519–532

    Article  Google Scholar 

  40. Ji, L. (1989) Decomposition of overlapping chromosomes, in Automation of Cytogenetics, (Lundsteen, C. and Piper, J., eds) Springer-Verlag, Berlin, pp 177–190

    Google Scholar 

  41. Ji, L (1991) Fully automatic chromosome segmentation. Cytometry, in press

    Google Scholar 

  42. Errington, P. A and Graham, J (1993) Application of artificial neural networks to chromosome classification Cytometry, in press.

    Google Scholar 

  43. Lundsteen, C, Gerdes, T, and Maahr, J. (1989) Cytogenetic analysis by automatic multiple cell karyotyping, in Automation of Cytogenetics (Lundsteen, C. and Piper, J., eds) Springer-Verlag, Berlin, pp. 263–274.

    Google Scholar 

  44. Carothers, A. D., Rutovitz, D. and Granum, E. (1983) An efficient multiple-cell approach to automatic aneuploidy screening. Anal Quant Cytol. 5, 194–200.

    PubMed  CAS  Google Scholar 

  45. Granlund, G. H., Zack, G. W., Young, I. T, and Eden, M (1976) A technique for multiple-cell chromosome karyotyping. 7 Histochem. Cytochem. 24, 160–167.

    CAS  Google Scholar 

  46. Hilditch, C J. (1969) The principles of a software system for karyotype analysis, in Human Population Cytogenetics (Jacobs, P. A., Price, W. H, and Law, P., eds.) Edinburgh University Press, Edinburgh, Scotland, pp 297–325.

    Google Scholar 

  47. Lundsteen, C. (1978) A proposed format for system output: the combined karyotype Proceedings of the 1978 European Workshop on Automated Human Cytogenetics Electronics Laboratory, Technical University of Denmark, Lyngby, pp. s3.3, s3.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Graham, J., Piper, J. (1994). Automatic Karyotype Analysis. In: Gosden, J.R. (eds) Chromosome Analysis Protocols. Methods in Molecular Biology™, vol 29. Humana Press. https://doi.org/10.1385/0-89603-289-2:141

Download citation

  • DOI: https://doi.org/10.1385/0-89603-289-2:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-289-7

  • Online ISBN: 978-1-59259-516-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics