Skip to main content

Microinjection of In Vitro Transcribed RNA and Antisense Oligonucleotides in Mouse Oocytes and Early Embryos to Study the Gain-and Loss-of-Function of Genes

  • Protocol
In Vitro Transcription and Translation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 37))

Abstruct

The oocyte is a useful model for the investigation of the function of various genes, especially those involved in meiosis. Since meiosis and mitosis are very similar processes, oocytes could prove useful in elucidating the role of genes in cellular proliferation. Indeed, the identification of the involvement of c-mos in meiosis is an excellent example of the manner in which oocytes have proven useful for establishing gene function (1,2). c-mos is the cellular homolog of the viral mos oncogene of Moloney murine sarcoma virus (1). It is a member of the src kinase family and is expressed at very low levels in some adult tissues (3). However, the levels of c-mos expression are very high in male and female germ cells, thus suggesting a function for mos in meiosis (4). Loss-of-function studies by microinjection of 5′ ATG spanning antisense oligonucleotides established this point when Xenopus oocytes failed to undergo germinal vesicle stage breakdown and thus failed to complete meiosis. In a similar fashion, the role of other genes, such as ras, and ets2, has been shown to be necessary for oocyte maturation in Xenopus oocytes (57). Xenopus oocytes have been widely used to study the function of genes, because the oocytes translate injected mRNAs with high fidelity. However, Fig. 1. Microinjection of HSP70 antisense mRNA into one-cell mouse embryos results in inhibition of HSP7O expression. Immunoprecipitation was carried out pith an HSP70 antibody and the immunoprecipitate resolved on a 10% SDS-PAGE gel. C = control; AS = antisense injection; S = sense injected. It is clear that HSP70 is being expressed in control embryos and at greater levels in sense-injected embryos, and that its expression is inhibited in antisenseinjected embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sagata, N., Oskasson, M., Copeland, T., Brumbaugh, J., and Van Woude, G. F. (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–525.

    Article  PubMed  CAS  Google Scholar 

  2. Sagata, N., Daar, I., Oskarsson, M., Showalker, S. D., and VandeWoude, G. F. (1989) The product of the mos Proto-oncogene as a candidate “inhibitor” for oocyte maturation. Science 245, 643–645.

    Article  PubMed  CAS  Google Scholar 

  3. Schmidt, M., Oskarsson, M. K., Dunn, J. K., Blair, D. G., Hughes, S., Propst, F., and Vande Woude, G. F. (1988) Chicken homolog of the mos proto-oncogene. Mol. Cell Biol. 8, 923–929.

    PubMed  CAS  Google Scholar 

  4. Propst, F. and Vande Woude, G. F (1985) Expression of c-mos protooncogene transcript in mouse tissues. Nature 315, 516–518.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, L. Q., Burdett, L. A., Seth, A. K., Lautenberger, J. A., and Papas, T. S. (1990) Requirement of ets-2 expression for Xenopus oocyte maturation. Science 250, 1416–1418.

    Article  PubMed  CAS  Google Scholar 

  6. Birchmeier, C. and Brock, D. (1985) RAS proteins can induce meiosis in Xenopus oocytes. Cell 43, 615–621.

    Article  PubMed  CAS  Google Scholar 

  7. Spivach, J. C., Erikson, R. L., and Miller, J. L (1984) Microinjection of pp.60 v-vre into Xenopus oocytes increases phosphorylation of ribosomal protein S6 and accelerates the rate of progesterone-induced meiotic maturation. Mol. Cell. iol. 4, 1631–1634.

    Google Scholar 

  8. Brinster, R. L., Chen, H. Y., and Trumbauer, M. E. (1981) Mouse oocyte transcribes injected Xenopus 5S RNA gene. Science 211, 396–398.

    Article  PubMed  CAS  Google Scholar 

  9. Hendrey, J. and Kola, I. (1991) Thermolability of mouse oocytes is due to the lack of expression and/or inducibility of HSP70. Mol. Reprod. Devel. 28, 1–8.

    Article  PubMed  CAS  Google Scholar 

  10. Brinster, R. L., Chen, H. Y., Trumbauer, M. E., and Avarbock, M. R. (1980) Translation of globin messenger RNA by the mouse ovum. Nature 283, 499–501.

    Article  PubMed  CAS  Google Scholar 

  11. Kimelman, D. and Kirschner, M. W. (1989) An antisense mRNA directs the covalent modificatton of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell 59, 687–696.

    Article  PubMed  CAS  Google Scholar 

  12. Melton, D. A. (1985) Injected antisense RNAs specifically block messenger RNA translation in vivo. Proc. Natl. Acad. Sci. USA 82, 144–148.

    Article  PubMed  CAS  Google Scholar 

  13. Harland, R., and Weintraub, H. (1985) Translation of mRNA injected into oocytes is specifically inhibited by antisense RNA. J. Cell Biol. 101, 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  14. Wormington, W. M. (1986) Stable repression of ribosomal protein Ll synthesis in Xenopus oocytes by microinjection of antisense RNA. Proc. Natl. Acad. Sci. USA 83, 8639–8693.

    Article  PubMed  CAS  Google Scholar 

  15. Colman, A. (1984) Expression of exogenous DNA, in Xenopus Oocytes in Transcription and Translation, A Practical Approach. (Hames, D. and Higgins, S., eds.), IRL, Oxford, pp. 49–69.

    Google Scholar 

  16. Colman, A. (1986) Translation of eukaryotic messenger RNA in Xenopus oocytes, in Transcription and Translation, A Practical Approach (Hances, B. D. and Higgins, S. J., eds.), IRL, Oxford, pp. 271–300.

    Google Scholar 

  17. Izant, J. G. and Weintraub, H. (1984) Inhibition of thimidine kinase gene expression by antisense RNA: a molecular approach to genetic analysts. Cell 36, 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  18. Holt, J. T., Gopal, T. V., Moulton, A. D., and Nienhius, A. W. (1986) Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc. Natl. Acad. Sci. USA 83, 4794–4798.

    Article  PubMed  CAS  Google Scholar 

  19. Rebagliati, M. R. and Melton, D. A. (1987) Antisense RNA injection in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48, 599–605.

    Article  PubMed  CAS  Google Scholar 

  20. Shuttleworth, J. and Colman, A. (1988) Antisense oligonucleotide-directed cleavage of mRNA in Xenopus oocytes and eggs. EMBO J. 7, 427–434.

    PubMed  CAS  Google Scholar 

  21. Bienz, M. and Pelham, H. R. B. (1982) Expression of a Drosophila heat shock protem in Xenopus oocytes: conserved and divergent regulatory signals. EMBO J. 1, 1583–1588.

    PubMed  CAS  Google Scholar 

  22. Cazenare, C., Chevier, M, Thuong, N. T., and Héline, C., (1987) Rate of degradation of [α]-and [β]-oligodeoxynucleotides in Xenopus oocytes. Implication for anti-messenger strategies. Nucleic Acids Res. 15, 10,507–10,521.

    Article  Google Scholar 

  23. Woolf, T. M., Jennings, G., Rebgliati, M., and Melton, D. A. (1990) The stability, toxicity and effectiveness of unmodified and phosphorothioate anti-sense oligodeoxy nucleotides in Xenopus oocytes and embryos. Nucleic Acids Res. 18, 1763–1769.

    Article  PubMed  CAS  Google Scholar 

  24. Hogan, B., Constantini, F., and Lacy, E. (1986) Manipulating The Mouse Embryo, A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 89–106.

    Google Scholar 

  25. Quinn, P. O., Barros, C., and Whittingham, D. G. (1982) Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J. Reprod. Fertil. 66, 161–168.

    Google Scholar 

  26. Drummond, D. R., Armstrong, J., and Colman, A. (1985) The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res. 13, 7375–7394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Kola, I., Sumarsono, S.H. (1995). Microinjection of In Vitro Transcribed RNA and Antisense Oligonucleotides in Mouse Oocytes and Early Embryos to Study the Gain-and Loss-of-Function of Genes. In: Tymms, M.J. (eds) In Vitro Transcription and Translation Protocols. Methods in Molecular Biology, vol 37. Humana Press. https://doi.org/10.1385/0-89603-288-4:135

Download citation

  • DOI: https://doi.org/10.1385/0-89603-288-4:135

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-288-0

  • Online ISBN: 978-1-59259-524-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics