Skip to main content

Procedures to Improve Difficult Couplings

  • Protocol
Book cover Peptide Synthesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 35))

Abstract

The successful coupling of amino acid derivatives during the synthesis of a peptide by either solution or solid-phase procedures depends on both the reactivity of the carboxyl group of the N-protected amino acid and the steric accessibility of the reactive nucleophile (either a primary or secondary amine). Activation of the carboxyl group is a requisite for the synthesis of an amide bond. Many activation procedures have been developed to accomplish this, and ultimately, the reactivity of the activated species is crucial in determining the coupling yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kent, S. (1988) Chemical synthesis of peptides and proteins. Ann. Rev Biochem. 57, 957–989.

    Article  CAS  PubMed  Google Scholar 

  2. Meister, S. M. and Kent, S. (1984) Sequence-dependent coupling problems in stepwise solid-phase peptide synthesis: occurrence, mechanism, and correction, in Peptides. Structure and Function, Proceedings of the 8th American Peptide Symposium (Hruby, V. J. and Rich, D. H., eds.), Pierce Chem. Co, Rockford, IL, pp. 103–106.

    Google Scholar 

  3. Kent, S. (1985) Difficult sequences in stepwise peptide synthesis: common molecular origins in solution and solid phase, in Peptides: Structure and Function, Proceedings of the 9th American Peptide Symposium (Deber, M., Hruby, V. J., and Kopple, K. D., eds.), Pierce Chem. Co., Rockford, IL, pp. 407–414

    Google Scholar 

  4. Mutter, M, Altmann, K.-H., Bellot, D., Florsheimer, A., Herbert, J, Huber, M., Klein, B, Strauch, L, and Vorherr, T. (1985) The impact of secondary structure formation in peptide synthesis, in Peptides: Structure and Function, Proceedings of the 9th American Peptide Symposium (Deber, M., Hruby, V. J., and Kopple, K. D., eds), Pierce Chem Co., Rockford, IL, pp. 397–405.

    Google Scholar 

  5. Baron, M. H, Deloze, C., Toniolo, C., and Fasman, G D. (1978) Structure in solution of protected homo-oligopeptides of L-Vahne, L-Isoleucine and L-Phenylalanine · an infrared adsorption study Biopolymers 17, 2225–2239.

    Article  CAS  Google Scholar 

  6. Pillai, V. and Mutter, M. (1981) Conformational studies of poly(oxyethylene)bound peptides and protein sequences. Acc. Chem. Res. 14, 122–130.

    Article  CAS  Google Scholar 

  7. Narita, M., Chen, J Y., Sato, H., and Lim, Y. (1985) Critical peptide size for insolubility caused by β-sheet aggregation and solubility improvement by replacement of alanine residues with α-aminoisobutyric acid residues. Bull. Chem. Soc. Jpn. 58, 2494–2501.

    Article  CAS  Google Scholar 

  8. Gisin, F and Merrifield, R.B. (1972) Carboxyl-catalyzed intramolecular aminolysis: a side reaction in solid-phase peptide synthesis. J. Am. Chem. Soc. 94, 3102–3106

    Article  CAS  PubMed  Google Scholar 

  9. Barany, G., Kneib-Cordonier, N., and Mullen, D. G (1987) Solid-phase peptide synthesis: a silver anniversary report. Int. J. Peptide Protein Res. 30, 705–739.

    Article  CAS  Google Scholar 

  10. Fields, G. B. and Noble, R.L. (1990) Solid-phase peptide synthesis utilizing fluorenylmethoxycarbonyl amino acids. Int. J. Peptide Protein Res. 35, 161–214.

    Article  CAS  Google Scholar 

  11. Konig, W. and Geiger, R (1970) Eine neue zur synthese von peptiden: aktivierung der carboxylgruppe mit dicyclohexyl-carbodiimid unter zusatz von 1-hydroxybenzotriazolen. Chem. Ber. 103, 788–798.

    Article  CAS  PubMed  Google Scholar 

  12. Barany, G. and Merrifield, R. B. (1979) Solid-phase peptide synthesis, in The Peptides. Analysis, Synthesis and Biology, vol 2 (Gross, E. and Meinenhofer, J, eds.), Academic, New York, pp. 1–284.

    Google Scholar 

  13. Marglin, A. and Merrifield, R. B. (1966) Synthesis of bovine insulin by the solidphase method. J Am Chem Soc. 88, 5051,5052

    Article  Google Scholar 

  14. Pietta, P. G., Biondi, P. A., and Brenna, O (1976) Comparative acidic cleavage of methoxybenzyl protected amino acids. J. Org. Chem. 41, 703,704.

    Article  Google Scholar 

  15. Sieber, P. and Riniker, B. (1991) Protection of carboxamide functions by the trityl residue: application to peptide synthesis. Tet. Lett 32, 739–742.

    Article  CAS  Google Scholar 

  16. Sax, B, Dick, F., Tanner, R., and Gosteli, J (1992) 4-Methyltrityl (Mtt): a new protecting group for the side chains of Asn and Gin in solid-phase peptide synthesis. Peptide Res. 5, 245,246

    CAS  Google Scholar 

  17. Kaiser, E., Colescott, R. C., Bossinger, D, and Cook, P I (1970) Color test for the detection of free terminal amino groups in the solid-phase synthesis of peptides Anal. Biochem. 34, 595–598.

    Article  CAS  PubMed  Google Scholar 

  18. Kent, S. H, Hood, L E, Beilar, H., Meister, S., and Geiser, T. (1984) High yield chemical synthesis of biologically active peptides on an automated peptide synthesizer of novel design, in Peptides 1984: Proceedings of the 18th European Peptide Symposium (Ragnarsson, E, ed.), Almqvist and Wiksell, Stockholm, Sweden, pp. 185–188.

    Google Scholar 

  19. Atherton, E. and Sheppard, R C (1989) Analytical and monitoring techniques in solid-phase peptide synthesis, in Solid-Phase Peptide Synthesis. A Practical Approach, IRL, New York, pp. 112–130.

    Google Scholar 

  20. Kent, S H. and Merrifield, R B. (1981) The role of crosshnked resin support in enhancing the solvation and reactivity of self-aggregating peptides solid-phase synthesis of acyl carrier protein (65–74), in Peptides 1980. Proceedings of the 16th European Peptide Symposium (Brunfeldt, K, ed), Scriptor, Copenhagen, pp 328–333

    Google Scholar 

  21. Sarin, V., Kent, S. B. H, Tarn, J P, and Merrifield, R. B. (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem. 117, 147–157.

    Article  CAS  PubMed  Google Scholar 

  22. Tarn, J. P. (1985) Enhancement of coupling efficiency in solid-phase peptide synthesis by elevated temperature, in Peptides. Structure and Function, Proceedings of the 9th American Peptide Symposium (Deber, M., Hruby, V. J., and Kopple, K. D., eds.), Pierce Chem Co., Rockford, IL, pp. 423–425.

    Google Scholar 

  23. Lloyd, D. H., Petrie, G. M., Noble, R L, and Tarn, J. P. (1990) Increased coupling efficiency in solid phase peptide synthesis using elevated temperature, in Peptides Chemistry, Structure and Biology, Proceedings of the 11th American Peptide Symposium (Rivier, J. E. and Marshall, G. R., eds), Escom, Leiden, Netherlands, pp 909,910

    Google Scholar 

  24. Sheehan, J. and Hess, G. P (1955) A new method of forming peptide bonds. J. Am. Chem. Soc. 77, 1067

    Article  CAS  Google Scholar 

  25. Stewart, J M. and Young, J. D. (1984) Solid Phase Peptide Synthesis, Pierce Chem Co., Rockford, IL, pp. 81–83.

    Google Scholar 

  26. Knorr, R, Trezciak, A, Bannwarth, W., and Gillessen, D. (1989) New coupling reagents in peptide chemistry. Tet Lett 30, 1927–1930.

    Article  CAS  Google Scholar 

  27. Dourtoglou, V., Ziegler, J, and Gross, B. (1978) L’Hexafluoro-phosphate de O-benzotriazolyl-N-N-N’N’-tetramethyluronium: un reactif de couplage petidique nouveau et efficace. Tet. Lett. 15, 1269–1272.

    Article  Google Scholar 

  28. Fields, G., Lloyd, D. H., Macdonald, R. L., Otteson, K. M., and Noble, R. L (1991) HBTU activation for automated solid-phase peptide synthesis. Peptide Res 4, 95–101.

    CAS  Google Scholar 

  29. Castro, B., Dormoy, J. R., Evin, G., and Selvy, C. (1975) Peptide coupling reactions with benzotriazol-1-yl-tris (dimethylamino) phosphonium hexafluorophosphate (BOP). Tet. Lett. 14, 1219–1222.

    Article  Google Scholar 

  30. Fournier, A., Wang, C. T., and Felix, A. M. (1988) Applications of BOP reagent in solid phase peptide synthesis. Int. J. Peptide Protein Res. 31, 86–97.

    Article  CAS  Google Scholar 

  31. Forest, M. and Fournier, A (1990) BOP reagent for the coupling of pGlu and Boc-His(Tos) in solid phase peptide synthesis. Int. J. Peptide Protein Res. 35, 89–94.

    Article  CAS  Google Scholar 

  32. Coste, J., Le Nguyen, D, and Castro, B. (1990) PyBOP: a new peptide coupling reagent devoid of toxic by-product. Tet. Lett. 31, 205–208.

    Article  CAS  Google Scholar 

  33. Yamashiro, D., Blake, J., and Li, H (1976) The use of trifluoroethanol for improved coupling in solid-phase peptide synthesis. Tet. Lett. 18, 1469–1472.

    Article  Google Scholar 

  34. Milton, S. C. F. and De L., Milton, R. (1990) An improved solid-phase synthesis of a difficult sequence peptide using hexafluoro-2-propanol. Int. J. Peptide Protein Res. 36, 193–196

    Article  CAS  Google Scholar 

  35. Ogunjobi, O. and Ramage, R. (1990) Ubiquitin: preparative chemical synthesis, purification and characterization. Biochem. Soc Trans. 18, 1322–1333.

    CAS  PubMed  Google Scholar 

  36. Nozaki, S. (1990) Solid phase synthesis of steroidogenesis-activator polypeptide under continuous flow conditions. Bull. Chem Soc. Jpn 63, 842–846.

    Article  CAS  Google Scholar 

  37. Steinauer, R., Chen, F. M. F., and Benoiton, N. L. (1989) Studies on racemization associated with the use of benzotriazol-1-yl-tris (dimethylamino)phosphonium hexafluorophosphate (BOP). Int. J. Peptide Protein Res. 34, 295–298.

    Article  CAS  Google Scholar 

  38. Klis, W. A. and Stewart, J. M. (1990) Chaotropic salts improve solid-phase peptide synthesis coupling reactions, in Peptides: Chemistry, Structure and Biology, Proceedings of the 11th American Peptide Symposium (Rivier, J. E. and Marshall, G. R., eds.), Escom, Leiden, Netherlands, pp. 904–906.

    Google Scholar 

  39. Thaler, A., Seebach, D, and Cardinaux, F. (1991) Lithium salt effects in peptide synthesis, part II. Improvement of degree of resin swelling and efficiency in solidphase peptide synthesis. Helv. Chim. Acta 74, 628–643.

    Article  CAS  Google Scholar 

  40. Steinauer, R., Chen, F. M. F., and Benoiton, N. L. (1990) Studies on racemization associated with the coupling of activated hydroxyamino acids, in Peptides: Chemistry, Structure and Biology, Proceedings of the 11th American Peptide Symposium (Rivier, J. E. and Marshall, G. R., eds.), Escom, Leiden, Netherlands, pp. 967,968.

    Google Scholar 

  41. Atherton, E., Hardy, P. M., Harris, D. E., and Matthews, B. H. (1991) Racemisation of C-terminal cysteine during peptide assembly, in Peptides 1990. Proceedings of · the 21st European Peptide Symposium (Giralt, E. and Andreu, D, eds.), Escom, Leiden, Netherlands, pp. 243, 244.

    Google Scholar 

  42. Wang, S. S., Tam, J. P., Wang, B. S. H., and Merrifield, R. B. (1981) Enhancement of peptide coupling reactions by 4-Dimethylaminopyridine. Int. J. Peptide Protein Res. 18, 459–467.

    Article  CAS  Google Scholar 

  43. Crest, M, Jacquet, G., Gola, M., Zerrouk, H., Benslimane, A, Rochat, H., Mansuelle, P., and Martin-Eauclaire, M-F. (1992) Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca+2-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom. J. iol. Chem. 267, 1640–1647.

    CAS  Google Scholar 

  44. Fuller, W. D., Cohen, M. P, Shabankareh, M, and Blair, R. K. (1990) Urethane-protected amino acid N-carboxyanhydrides and their use in peptide synthesis. J. Am. Chem. Soc 112, 7414–7416.

    Article  CAS  Google Scholar 

  45. Carpino, L. A, Cohen, B. J, Stephens, E, Sadat-Aalee, D., Tien, J. H, and Landridge, D. (1986) ((9-Fluorenylmethyl)-oxy)carbonyl (Fmoc) acid chlorides Synthesis, characterization and application to the rapid synthesis of short peptide segments. J. Org. Chem. 51, 3732–3734.

    Article  CAS  Google Scholar 

  46. Bentho, J. N., Loffet, A., Pinel, C., Reuther, F., and Sennyey, G (1991) Amino acid fluorides: their preparation and use in peptide synthesis. Tet. Lett. 32, 1303–1306.

    Article  Google Scholar 

  47. Spencer, J R., Antonenko, V. V., Delaet, N G. J, and Goodman, M. (1992) Comparative study of methods to couple hindered peptides. Int. J. Peptide Protein Res. 40, 282–293.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Pennington, M.W., Byrnes, M.E. (1994). Procedures to Improve Difficult Couplings. In: Pennington, M.W., Dunn, B.M. (eds) Peptide Synthesis Protocols. Methods in Molecular Biology, vol 35. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-273-6:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-273-6:1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-273-6

  • Online ISBN: 978-1-59259-522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics