Skip to main content

Recent Developments for Crystallographic Refinement of Macromolecules

  • Protocol
Crystallographic Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 56))

Abstract

In the past decade macromolecular crystallography has undergone major advances in crystallization, data collection by synchrotron X-ray sources and area detectors, and data analysis by high performance computers and new computational techniques. In addition, recombinant gene technology in many cases allows the expression of large amounts of protein. This has resulted in an unprecedented increase in the number of protein crystal structures elucidated. Despite these successes, the fundamental problem in X-ray crystallography, the phase problem, remains unchanged. From a monochromatic diffraction experiment of a single crystal, it is possible to obtain the amplitudes, but not the phases of the reflections. Construction of the electron density by Fourier transformation requires both components of the complex structure factors. Phase information has to be obtained through experimental procedures, most commonly multiple isomorphous replacement, or knowledge-based procedures referred to as Patterson search or molecular replacement. Phase information obtained through these techniques is usually of limited accuracy and resolution, making it often difficult to interpret electron density maps in certain regions of the molecule. Furthermore, macromolecular crystals mostly diffract to less than atomic resolution, causing the process of fitting an atomic model to the observed intensities to be underdetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandén, C. I. and Jones, A (1990) Between Objectivity and subjectivity. Nature 343, 687–689

    Article  Google Scholar 

  2. Brunger, A T. (1992) The Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474

    Article  CAS  Google Scholar 

  3. Bninger, A T (1993) Assessment of phase accuracy by cross validation The free R value. Methods and applications. Acta Cryst D49, 24–36

    Google Scholar 

  4. Jack, A. and Levitt, M. (1978) Refinement of large structures by simultaneous minimization of energy and R factor. Acta Cryst A34, 931–935.

    CAS  Google Scholar 

  5. Hendrickson, W A (1985) Stereochemically restrained refinement of macromolecular structures. Meth Enzymol 115, 252–270

    Article  CAS  Google Scholar 

  6. Ten Eyck, L F (1973) Crystallographic fast fourier transforms. Acta Cryst A29, 183–191

    Google Scholar 

  7. Ten Eyck, L F (1977) Efficient structure-factor calculation for large molecules by the fast fourier transform. Acta Cryst A33, 486–492

    Google Scholar 

  8. Brunger, A T (1989) A memory-efficient fast fourier transformation algorithm for crystallographic refinement on supercomputer. Acta Cryst A45, 42–50.

    Google Scholar 

  9. Hendrickson, W A and Lattman, E E. (1970) Representation of phase probability distributions for simplified combination of independent phase information. Acta Cryst B26, 136–143

    Google Scholar 

  10. Brunger, A T (d988) Crystallographic refinement by simulated annealing Application to a 2 8 Å resolution structure of aspartate aminotransferase. J Mel Biol 203, 803–816

    Article  CAS  Google Scholar 

  11. Arnold, E. and Rossmann, M. G (1988) The use of molecular-replacement phases for the refinement of the human rhinovirus structure. Actu Cryst A44, 270–282

    Article  CAS  Google Scholar 

  12. Karplus, M and Petsko, G. A. (1990) Molecular-dynamics simulations in biology. Nature 347, 631–639

    Article  CAS  Google Scholar 

  13. Brunger, A T. (1991) Simulated annealing in crystallography. Ann Rev Phys Chem 42, 197–223

    Article  Google Scholar 

  14. Press, W H., Flannery, B P, Teukolosky, S A, and Vetterling, W. T (eds) (1986) Numerical Recipes Cambridge University Press, Cambridge, pp. 498–546

    Google Scholar 

  15. Stout, G.H. and Jensen, L H (eds) (1989) X-ray Structure Determination, A Practical Guide John Wiley, New York, pp 341–419.

    Google Scholar 

  16. Sussman, J L, Holbrook, S. R, Church, G. M., and Kim, S H (1977) Structure-factor least-squares refinement procedure for macromolecular structure using constrained and restrained parameters. Acta Cryst A33, 800–804

    CAS  Google Scholar 

  17. Konnert, J H and Hendrickson, W A. (1980) A restrained-parameter thermal-factor refinement procedure. Acta Cryst A36, 344–349

    CAS  Google Scholar 

  18. Tronrud, D E, Ten Eyck, L F, and Matthews, B W (1987) An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Cryst A43, 489–500

    CAS  Google Scholar 

  19. Brunger, A. T, Kuriyan, J, and Karplus, M (1987) Crystallographic R factor refinement by molecular dynamics. Sczence 235, 458–460

    Article  CAS  Google Scholar 

  20. Tronrud, D E (1992) Conjugate-direction minimization an improved method for the refinement of macromolecules. Acta Cryst A48, 912–916

    CAS  Google Scholar 

  21. Kirkpatrick, S, Gelatt, C. D., Jr., and Vecchi, M. P (1983) Optimization by simulated annealing. Science 220, 671–680.

    Article  CAS  Google Scholar 

  22. Laarhoven, P. J M. and Aarts, E H L (eds) (1987) Simulated Annealing Theory and Applications D. Reidel Publishing, Dordrecht, pp. 187.

    Google Scholar 

  23. Metropolis, N, Rosenbluth, M., Rosenbluth, A., Teller, A., and Teller, E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21, 1087–1092

    Article  CAS  Google Scholar 

  24. Verlet, L (1967) Computer “expertments” on classical fluids I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159, 98–105

    Article  CAS  Google Scholar 

  25. Berendsen, H J. C, Postma, J P M, van Gunsteren, W F, DiNola, A, and Haak, J R (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81, 3684–3690

    Article  CAS  Google Scholar 

  26. Grtewank, A. O. (1981) Generalized descent for global optimization. J Optimization Theory and Applications 34, 11–39

    Article  Google Scholar 

  27. van Schaik, R. C, van Gunsteren, W F., and Berendsen, H J C (1992) Conformational search by potential energy annealing: Algorithm and application to cyclosporin A. J Comp-Aided Mol Design 6, 97–112.

    Article  Google Scholar 

  28. Bounds, D G (1987) New optimization methods from physics and biology. Nature (Lond) 329, 215–219.

    Article  Google Scholar 

  29. Brunger, A T, Krukowski, A, and Erickson, J (1990) Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Cryst A46, 585–593

    CAS  Google Scholar 

  30. Fujinaga, M, Gros, P, and van Gunsteren, W F (1989) Testing the method of crystallographic refinement using molecular dynamics. J Appl Cryst 22, 1–8

    Article  CAS  Google Scholar 

  31. Kunyan, J, Brunger, A T, Karplus, M, and Hendrickson, W A (1989) X-ray refinement of protein structures by simulated annealing: Test of the method on myohemerythrin. Acta Cryst A45, 396–409

    Google Scholar 

  32. Glos, P, Betzel, Ch, Dauter, Z, Wilson, K S,and Hol, W G J (1989) Molecular dynamics refinement of a thermitase-eglin-c complex at 1.98 Å resolution and comparison of two crystal forms that differ in calcium content. J Mol Biol 210, 347–367

    Article  Google Scholar 

  33. Jones, T A, Zou, J-Y, Cowan, S W, and Kjeldgaard, M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst A47, 110–119

    CAS  Google Scholar 

  34. Read, R J and Moult, J (1992) Fitting electron density by systematic search. Acta Cryst A48, 104–113

    CAS  Google Scholar 

  35. Lamzm, V S and Wilson, K S (1993) Automated refinement of protein models. Acta Cryst D49, 129–147

    Google Scholar 

  36. Fortier, S, Castleden, J., Glasgow, J, Conklin, D., Walmsley, C, Leherte, L., and Allen, F H (1993) Molecular scene analysis the Integration of direct methods and artificial intelligence strategies for solving protein crystal structures. Acta Cryst D49, 168–178

    CAS  Google Scholar 

  37. Hamilton, W C (1965) Significance tests on the crystallographic R factor. Acta Cyst 18, 501–510

    Google Scholar 

  38. Bricogne, G (1984) Maximum entropy and the foundation of direct methods. Acta Cryst A40, 410–445

    CAS  Google Scholar 

  39. Bncogne, G and Gilmore, C J (1990) A multisolution method of phase determination by combined maximization of entropy and likelihood I Theory, algorithms and strategy. Acta Cryst A46, 284–297

    Google Scholar 

  40. Karle, J (1991) Direct calculation of atomic coordinates from diffraction intensities Space group P1. Proc Nat1 Acad Sci USA 88, 10,099–10,103

    Article  CAS  Google Scholar 

  41. Brunger, A T (1992) X-PLOR A System for X-ray Crystallography and NMR Yale University Press, New Haven

    Google Scholar 

  42. Engh, R A and Huber, R (1991) Accurate bond and angle parameters for X-ray structure refinement. Acta Cryst A47, 392–400

    CAS  Google Scholar 

  43. Allen, F H, Kennard, O, and Taylor, R (1983) Systematic analysis of structural data as a research technique in organic chemistry. Accounts of Chemical Research 16, 146–153

    Article  CAS  Google Scholar 

  44. Baker, D, Bystroff, C, Fletterick, R J, and Agard, D A (1993) PRISM Topo-logically constrained phase refinement for macromolecular crystallography. Acta Cryst D49, 429–439

    CAS  Google Scholar 

  45. Swaminathan, S, Furey, W, Pletcher, J, and Sax, M (1992) Crystal structure of staphylococcal enterotoxin B a superantigen. Nature 359, 801–806

    Article  CAS  Google Scholar 

  46. Musacchlo, A, Noble, M, Pauptit, R, Wierenga, R, and Saraste, M. (1992) Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855

    Article  Google Scholar 

  47. Guo, H-C, Jardetzky, T S, Garrett, T P J, Lane, S W, Strominger, J L, and Wiley, D C (1992) Different length peptides bind to HLA-Aw68 similarly at then ends but bulge out in the middle. Nature 360, 364–366.

    Article  CAS  Google Scholar 

  48. James, M N. G and Sielecki, A. R. (1983) Structure and refinement of penicillopepsin at 1 8 A resolutton. J Mol Biol 163, 299–361

    Article  CAS  Google Scholar 

  49. Baker, D, Krukowski, A. E., and Agard, D A. (1993a) Uniqueness and the ab initio phase problem in macromolecular crystallography. Acta Cryst D49, 186–192

    CAS  Google Scholar 

  50. Levinthal, Z (1968) Are there pathways for protein folding?. J Chem Phys 65, 44,45

    Google Scholar 

  51. Leahy, D J., Hynes, T R, McConnell, H M, and Fox, R O (1988) Crystallization of an anti-tempo-dinitrophenyl monoclonal antibody fab fragment with and without bound hapten. J Mol Biol 203, 829,830

    Article  CAS  Google Scholar 

  52. Brunger, A. T., Leavy, D J, Hynes, T R, and Fox, R. O (1991) The 2.9 Å resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody fab fragment with bound hapten. J Mol. Biol 221, 239–256

    CAS  Google Scholar 

  53. Read, R J (1990) Structure-factor probabilities for related structures. Acta Cryst A46, 900–912

    CAS  Google Scholar 

  54. Hodel, A., Kim, S-H, and Brunger, A T (1992) Model bias in macromolecular crystal structures. Acta Cryst 48, 851–859

    Article  Google Scholar 

  55. Ramachandran, G N and Sasisekharan, V (1968) Conformation of polypeptides and proteins. Advan Protein Chem. 23, 283–438

    Article  CAS  Google Scholar 

  56. Morris, A L, MacArthur, M. W., Hutchinson, E G, and Thornton, J M (1992) Stereochemical quality of protein structure coordinates. Proteins 12, 345–364.

    Article  CAS  Google Scholar 

  57. Eisenberg, D. and McLachlan, A D (1986) Solvation energy in protein folding and binding. Nature 319, 199–203.

    Article  CAS  Google Scholar 

  58. Novotný, J., Rashin, A A, and Bruccolert, R. E. (1988) Criteria that discriminate between native proteins and incorrectly folded models. Proteins 4, 19–30

    Article  Google Scholar 

  59. Chtche, L, Gregoret, L M, Cohen, F E, and Kollman, P A (1990) Protein model structure evaluation using the solvation free energy of folding. Proc Natl Acad Sci USA 87, 3240–3243

    Article  Google Scholar 

  60. Vriend, G. and Sander, C (1993) Quality control of protein models Directional atomic contact analysis. J Appl Cryst 26, 47–60

    Article  CAS  Google Scholar 

  61. Bowte, J. U., Luthy, R., and Eisenberg, D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170

    Article  Google Scholar 

  62. Lüthy, R., Bowie, J. U., and Eisenberg, D. Assessment of protein models with three-dimensional profiles (1992) Nature 356, 83–85

    Article  Google Scholar 

  63. Matthews, B. W. (1968) Solvent content of protein crystals. J Mol. Biol 33, 491–497.

    Article  CAS  Google Scholar 

  64. Fraser, R. D B, Macrae, T P, and Suzuki, E (1978) An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules. J Appl Cryst 11, 693,694

    Article  CAS  Google Scholar 

  65. Moews, P C and Kretsinger, R H (1975) Refinement of the structure of the carp muscle calcium-binding parvalbumin by model building and difference fourier analysts. J, Mol. Biol 91, 201–228.

    Article  CAS  Google Scholar 

  66. Phillips, S E W (1980) Structure and refinement of oxymyoglobin at 1.6 ÅA resolution. J Mol. Biol. 142, 531–554

    Article  CAS  Google Scholar 

  67. Cheng, X and Schoenborn, B P (1990) Hydration in protein crystals A neutron diffraction analysis of carbonmonoxymyoglobin. Acta Cryst B46, 195–208

    CAS  Google Scholar 

  68. Badger, J and Caspar, D L D (1991) Water structure in cubic insulin crystals. Proc Natl Acad Sci USA 88, 622–626

    Article  CAS  Google Scholar 

  69. Kuriyan, J., Petsko, G A., Levy, R M, and Karplus, M (1986) Effect of am sot-ropy and anharmonicity on protem crystallographic refinement. J Mol Blol 190, 227–254

    Article  CAS  Google Scholar 

  70. Kunyan, J, Osapay, K, Burley, S. K, Bunger, A T, Hendrickson, W A, and Karplus, M (1991) Exploration of disorder in protein structures by X-ray restrained molecular dynamics. Proteins 10, 340–358.

    Article  Google Scholar 

  71. Diamond, R (1990) On the use of normal modes in thermal parameter refinement Theory and application to the bovine pancreatic trypsin inhibitor. Acta Cryst A46, 425–435

    CAS  Google Scholar 

  72. Kidera, A and Go, N (1990) Refinement of protein dynamic structure Normal mode refinement. Proc Natl Acad Sci USA 87, 3178–3722

    Article  Google Scholar 

  73. Kidera, A, Inaka, K, Matsushima, M., and Gō, N (1992) Normal mode refinement. Crystallographic refinement of protein dynamic structure applied to human lysozyme. Biopolymers 32, 315–319

    Article  CAS  Google Scholar 

  74. Schomaker, V, and Trueblood, K N (1968) On the rigid-body motion of molecules in crystals. Acta Cryst B24, 63–76

    Google Scholar 

  75. Kunyan, J and Weis, W I (1991) Rigid protein motion as a model for crystallographic temperature factors. Proc Nat1 Acad Sci USA 88, 2773–2777

    Article  Google Scholar 

  76. Howlin, B, Moss, D S, and Harris, G W (1989) Segmented anisotropic refinement of bovine ribonuclease A by the application of the rigid-body TLS model. Acta Cryst A45, 851–861

    CAS  Google Scholar 

  77. He, X-M. and Craven, B M (1993) Internal vibrations of a molecule consisting of rigid segments I Non-interacting internal vibrations. Acta Cryst A49, 10–22

    CAS  Google Scholar 

  78. Gros, P, van Gunsteren, W F, and Hol, W G J (1990) Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. Science 249, 1149–1152

    Article  CAS  Google Scholar 

  79. Burling, F T and Brunger, A T (1994) Thermal motion and conformational disorder in protein crystal structures comparison of multi-conformer and time-averaging models. Israel Journal of Chemistry 34, 165–175

    CAS  Google Scholar 

  80. Jiang, J-S and Brunger, A T (1994) Protein hydration observed by x-ray diffraction solvation properties of penicillopepsin and neuraminidase crystal structures. J Mel Biol 243, 100–115

    Article  CAS  Google Scholar 

  81. Rice, L M and Brunger, A. T. (1994) Torsion angle dynamics reduced variable conformational sampling enhances crystallographic structure refinement. Proteins Structure, Function, and Genetics 19, 277–290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc.

About this protocol

Cite this protocol

Brünger, A.T. (1996). Recent Developments for Crystallographic Refinement of Macromolecules. In: Jones, C., Mulloy, B., Sanderson, M.R. (eds) Crystallographic Methods and Protocols. Methods in Molecular Biology™, vol 56. Humana Press. https://doi.org/10.1385/0-89603-259-0:245

Download citation

  • DOI: https://doi.org/10.1385/0-89603-259-0:245

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-259-0

  • Online ISBN: 978-1-59259-543-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics