Skip to main content

Refinement of Protein and Nucleic Acid Structures

  • Protocol
  • 1621 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 56))

Abstract

Refinement constitutes the last of the three main steps in the crystallographic establishment of a molecular structure, which are fast, crystal growth and data collection; second, phase determination and calculation of electron density maps; and third, model building and refinement. This final part is necessary because the structural models arrived at after the first two steps are approximate and usually contain errors in the tracing of the macromolecular chain. During the crystallographic refinement process, the macromolecular model is changed so that the agreement between the measured diffraction intensities and those calculated improves. This improved agreement between observed and calculated structure factors leads to better phases and, concomitantly, to improved electron density maps. The refinement process is monitored by the conventional crystallographic R factor, defined by the equation:

(1)

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Branden, C-I, and Jones, T. A. (1990) Between Objectivity and Subjectivity Nature 343, 687–689

    Article  Google Scholar 

  2. Dunitz, J D (1979) X-Ray Analysis and the Structure of Organic Molecules Cornell University Press, Ithaca

    Google Scholar 

  3. Blundell, T L. and Johnson, L. (1976) Protein Crystallography Academic, London

    Google Scholar 

  4. Waser, J (1963) Least-squares refinement with subsidiary conditions. Acta Cryst 16, 1091–1094

    Article  CAS  Google Scholar 

  5. Sussman, J. L. (1985) Constrained-restrained least-squares (CORELS) refinement of proteins and nucleic acids. Methods Enzymol 115, 271–303

    Article  CAS  Google Scholar 

  6. Hendrickson, W. A (1985) Stereochemically restrained refinement of macromolecular structures. Methods Enzymol 115, 252–270

    Article  CAS  Google Scholar 

  7. Westhof, E., Dumas, P, and Moras, D (1985) Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol. Biol. 184, 119–145.

    Article  CAS  Google Scholar 

  8. Westhof, E, Dumas, P, and Moras, D. (1988) Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Cryst A44, 112–123

    CAS  Google Scholar 

  9. Jack, A., and Levitt, M (1978) Refinement of large structures by simultaneous minimization of energy and R factor. Acta Cryst A34, 931–935

    CAS  Google Scholar 

  10. Deisenhofer, J, Remington, S J., and Steigemann, W (1985) Experiences with various techniques for the refinement of protein structures. Methods Enzymol 115, 303–323

    Article  CAS  Google Scholar 

  11. Brunger, A T, Kuriyan, J, and Karplus, M. (1987) Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460

    Article  CAS  Google Scholar 

  12. Brunger, A. T (1988) Crystallographic refinement by simulated annealing. J Mol Biol 203, 803–816

    Article  CAS  Google Scholar 

  13. Fujinaga, M., Gros, P, and Van Gunsteren, W F (1989) Testing the method of crystallographic refinement using molecular dynamics. J Appl Cryst 22, 1–8

    Article  CAS  Google Scholar 

  14. Jones, T. A (1985) Interactive computer graphics FRODO. Methods Enzymol 115, 157–171

    Article  CAS  Google Scholar 

  15. Pflugrath, J W, Saper, M. A., and Quiocho, F. A. (1984) in. Methods and Applications zn Crystallographic Computing (Hall, S and Ashida, T, eds), Oxford University Press, London, pp 404–407

    Google Scholar 

  16. Cambillau, C. and Horjales, E (1987) TOM. a FRODO subpackage for protein-ligand fitting with interactive energy minimization. J Mol Graphics 5, 174–177

    Article  CAS  Google Scholar 

  17. Luzzati, V. (1952) Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cyst 5, 802–810

    Article  Google Scholar 

  18. Rees, D., Bilwes, A, Samama, J P., and Moras, D. (1990) Cardiotoxin VII4 from Najka mossambica. The refined crystal structure. J Mol Biol 214, 281–297.

    Article  CAS  Google Scholar 

  19. Read, R. (1990) Structure-factor probabilities for related structures. Acta Cryst A46, 900–912

    CAS  Google Scholar 

  20. Westhof, E (1987) Re-refinement of the B-dodecamer d(CGCGAATTCGCG) with a comparative analysis of the solvent in it and in the Z-hexamer d(5BrCGSBrCGSBrCG). J Biomol Struct Dyn 5, 581–600

    CAS  Google Scholar 

  21. Yu, H, Karplus, M., and Hendrickson, W. A. (1985) Restraints in temperature factor refinement for macromolecules: an evaluation by molecular dynamics. Acta Cryst. B41, 191–201.

    CAS  Google Scholar 

  22. Westhof, E, Chevrier, B, Gallion, S. L, Weiner, P K, and Levy, R. M. (1986) Temperature-dependent molecular dynamics and restrained X-ray refinement simulations of a Z-DNA hexamer. J Mol. Biol 191, 699–712

    Article  CAS  Google Scholar 

  23. Kennard, O, Cruse, W T B, Nachman, J., Prangé, T, Shakked, Z, and Rabinovich, D (1986) Ordered water structure in an A-DNA octamer at 1 7 Å resolution. J Biomol Struct Dynamics 3, 623–647

    CAS  Google Scholar 

  24. Savage, H. and Wlodawer, A (1986) Determination of water structure around biomolecules using X-Ray and neutron diffraction methods. Methods Enzymol 127, 162–183

    Article  CAS  Google Scholar 

  25. Westhof, E (1988) Water An integral part of nucleic acid structure. Ann Rev Biophys Biophys 17, 125–144

    Article  CAS  Google Scholar 

  26. Richards, F M (1968) The matching of physical models to 3-dimensional electron density maps a simple optical device. J Mol Biol 37, 225–230

    Article  CAS  Google Scholar 

  27. Bush, B L (1984) Interactive modeling of enzyme-inhibitor complexes at Merck macromolecular modeling graphics facility. Comput Chem 8, 1–6

    Article  CAS  Google Scholar 

  28. FRODO from MRC (Cambridge, GB) by Phil Evans. FRODO from IBMC (Strasbourg, France) with some nucleic acids specificity by B Amerein, M Bergdoll, P Dumas, R Ripp FRODO from EMBL (Heidelberg, RFA) by C Carlsson, H Bosshard

    Google Scholar 

  29. Jones, T A and Thirup, S (1986) Using known substructures in protein model building and crystallography. EMBO J 5, 819–822

    CAS  Google Scholar 

  30. Jones, T A, Zou, J Y, Cowan, S W, and Kjeldgaard, M (1991) Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Cyst A47, 110–119

    Article  CAS  Google Scholar 

  31. Greer, J (1974) 3D pattern recognition. an approach to automated interpretation of electron density maps of proteins. J Mol Biol 82, 279–302

    Article  CAS  Google Scholar 

  32. Richardson, J (1981) The anatomy and taxonomy of protein structure. Adv Prot Chem 34, 167–339

    Article  CAS  Google Scholar 

  33. Amerein, B, Ripp, R., and Dumas, P (1987) PUCK a real-time modification of sugar pucker on a PS300. J Mol. Graphics 5, 184–189.

    Article  CAS  Google Scholar 

  34. Kim, Y, Grable, J C, Love, R, Greene, P. J., and Rosenberg, J. M (1990) Refinement of EcoRI endonuclease crystal structure. a revised protein chain tracing. Science 249, 1307–1309

    Article  CAS  Google Scholar 

  35. Janin, J (1990) Errors in three dimensions. Biochimie 72, 705–709.

    Article  CAS  Google Scholar 

  36. Holm, L. and Sander, C (1991) Database algorithm for generating protein backbone and side-chain co-ordinates from a C-alpha trace Application to model building and detection of co-ordinate errors. J Mol Biol 218, 183–194

    Article  CAS  Google Scholar 

  37. Tuffery, P, Etchebest, C., Hazout, S, and Lavery, R (1991) A new approach to the rapid determination of protein side chain conformations. J Biomol Struct Dynamics 8, 1267–1289

    CAS  Google Scholar 

  38. Abad-Zapatero, C, Griffith, J P, Sussmann, J L, and Rossmann, M G (1987) Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. J Mol Biol 198, 445–467.

    Article  CAS  Google Scholar 

  39. Brunger, A (1992) Free R value a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475

    Article  CAS  Google Scholar 

  40. Story, R M., Weber, I T, and Steitz, T. A (1992) The structure of the E co1i recA protein monomer and polymer. Nature 355, 318–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc.

About this protocol

Cite this protocol

Westhof, E., Dumas, P. (1996). Refinement of Protein and Nucleic Acid Structures. In: Jones, C., Mulloy, B., Sanderson, M.R. (eds) Crystallographic Methods and Protocols. Methods in Molecular Biology™, vol 56. Humana Press. https://doi.org/10.1385/0-89603-259-0:227

Download citation

  • DOI: https://doi.org/10.1385/0-89603-259-0:227

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-259-0

  • Online ISBN: 978-1-59259-543-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics