Skip to main content

Analysis of Cellular Phosphoinositides and Phosphoinositols by Extraction and Simple Analytical Procedures

  • Protocol
Biomembrane Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 27))

Abstract

Part A. Biosynthesis and Extraction of Phosphoinositides and Phosphoinositols

The minor inositol-containing membrane phospholipids, the phosphoinositides, play a central role in cell signal transduction. Activation of a hormone-sensitive phospholipase C (phosphoinositidase C) results in the rapid catabolism of the polyphosphoinositides to form the two second messengers inositol 1,4,5-trisphosphate (Ins(l,4,5)P3), a water soluble phosphoinositol that promotes the release of Ca2+ from intracellular stores, and diacylglycerol (DG), which remains in the plasma membrane and activates protein kinase C (13). See Fig. 1 for a summary of the pathways.

Metabolic pathways activated as a consequence of phosphoinositidase C action. In Panel A major metabolic pathways activated by phosphoinositidase C action on PtdIns(4,5)P2 are shown with solid arrows. Some of the additional pathways that may be activated are shown by broken arrows Abbreviations: Ptdlns: phosphatidylinositol; PtdIns4P. phosphatidylinositol 4-phosphate; PtdIns(4,5)P2 phosphatidylinositol 4,5-bisphosphate; DG: diacylglycerol; PtdOH: phosphatidic acid; CDP-DG: CDP-diacylglycerol; Ins: Inositol. For phosphoinositols, abbreviations are in the form Ins(x,y,z)Pn where x, y, and z refer to the positions of the phosphate groups on the myo-inositol ring and n refers to the total number of phosphates. Panel B is a simplified outline of the metabolic pathways in (A) to show alternative abbreviations. PI: phosphatidylinositol, PIP: phosphatidyl-inositol phosphate; PIP2, phosphatidylinositol bisphosphate; DG, PtdOH, CDP-DG and Ins as above. Phosphoinositols are referred to as IPn where n refers to the number of phosphates on the inositol ring In both panels, sites of Li*+ inhibition are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge, M. J. (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann. Rev. Biochem 56, 159–193.

    Article  PubMed  CAS  Google Scholar 

  2. Shears, S. B. (1989) Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260, 313–324

    PubMed  CAS  Google Scholar 

  3. Rana, R. S. and Hokin, L. E. (1990) Role of phosphoinositides in transmembrane signalling. Physiol. Rev. 70, 115–164.

    PubMed  CAS  Google Scholar 

  4. Bligh, E. G. and Dyer, W. J. (1959) A rapid method for total lipid extraction and purification. Canad. J. Biochem. Physiol. 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  5. Hawthorne, J N. and White, D. A. (1975) Myo-inositol lipids. Vitamins and Hormones 33, 529–573.

    Article  PubMed  CAS  Google Scholar 

  6. Beaven, M. A, Moore, J. P., Smith, G. A., Hesketh, T. R., and Metcalfe, J. C. (1984) The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J. Biol. Chem. 259, 7137–7142.

    PubMed  CAS  Google Scholar 

  7. Maeyama, K., Hohman, R J., Metzger, H., and Beaven, M. A. (1986) Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. J. Biol. Chem. 261, 2583–2592

    PubMed  CAS  Google Scholar 

  8. Ellis, R. B., Galhard, T., and Hawthorne, J. N. (1963) Phosphoinositides 5: the inositol lipids of Ox brain. Biochem. J. 88, 125–131.

    PubMed  CAS  Google Scholar 

  9. Berridge, M. J., Dawson, R. M., Downes, C. P., Heslop, J. P., and Irvine, R. F (1983) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212, 473–482.

    PubMed  CAS  Google Scholar 

  10. Batty, I. R., Nahorski, S. R., and Irvine, R. F. (1985) Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortex slices. Biochem. J 232, 211–215.

    PubMed  CAS  Google Scholar 

  11. Markham, R. and Smith, J. D. (1952) The structure of ribonucleic acids; 1 cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochem. J. 52, 552–557.

    PubMed  CAS  Google Scholar 

  12. Desjobert, A. and Petek, F. (1956) Chromatographic sur papier des esters phosphoriques de l’inositol; application a l’etude de la degradation hydrolytic de l’inositolhexaphosphate. Bull. Soc. Chim. Biol. 38, 871–883.

    PubMed  CAS  Google Scholar 

  13. Pizer, F. L. and Ballou, C E. (1959) Studies on myo-inositol phosphates of natural origin. J. Am. Chem. Soc. 81, 915–921.

    Article  CAS  Google Scholar 

  14. Grado, C. and Ballou, C. E (1961) Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain phosphoinositide. J. Biol. Chem. 236, 54–60.

    PubMed  CAS  Google Scholar 

  15. Tomlinson, R. V. and Ballou, C. E, (1961) Complete characterisation of the myoinositol polyphosphates from beef brain phosphoinositide J Biol. Chem. 236, 1902–1906.

    PubMed  CAS  Google Scholar 

  16. Brockerhoff, H. and Ballou, C E. (1961) The structure of the phosphoinositide complex of beef brain. J Biol. Chem. 236, 1907–1911

    CAS  Google Scholar 

  17. Dawson, R. M. C. and Clarke, N. (1972) D-myo-inositol 1.2-cychc phosphate 2-hydrolase. Biochem. J. 127, 113–118.

    PubMed  CAS  Google Scholar 

  18. Brown, D. M. and Stewart, J. C. (1966) The structure of triphosphoinositide from beef brain. Biochim. Biophys. Acta 125, 413–421.

    PubMed  CAS  Google Scholar 

  19. Tate, M. E. (1968) Separation of myo-inositol pentaphosphates by moving paper electrophoresis. Anal. Biochem. 23, 141–149.

    Article  PubMed  CAS  Google Scholar 

  20. Dean, N. M. and Moyer, J. D. (1988) Metabolism of inositol bis-, tris-, tetrakis and pentakis-phosphates in GH3 cells. Biochem. J. 250, 493–500

    PubMed  CAS  Google Scholar 

  21. Jolles, J., Zwiers, H., Dekar, H., Wirtz, W. A., and Gispen, W. H. (1981) Corticotropin l-24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Biochem J. 194, 283–291.

    PubMed  CAS  Google Scholar 

  22. Mitchell, K. T., Ferrell, J. E. Jr., and Wray, H. H. (1986) Separation of phos-phoinositides and other phospholipids by two-dimensional thin layer chromatography. Anal. Biochem 158, 447–453.

    Article  PubMed  CAS  Google Scholar 

  23. Downes, C P. and Michell, R. H. (1981) The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem. J. 198, 133–140.

    PubMed  CAS  Google Scholar 

  24. Clarke, N. G. and Dawson, R. M. C (1981) Alkaline 0->N-transacylation: a new method for the quantitative deacylation of phospholipids. Biochem. J. 195, 301–306.

    PubMed  CAS  Google Scholar 

  25. Challis, R. A. J., Batty, I. H., and Nahorsky, S. R. (1988) Mass measurements of inositol 1,4,5-trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarisation. Biochem. Biophys. Res. Comm. 157, 684–691.

    Article  Google Scholar 

  26. Palmer, S., Hughes, K T., Lee, D. Y., and Wakelam, M. J. O. (1989) Development of a novel Ins(l,4,5)P3 specific binding assay. Cell. Signal. 1, 147–153.

    Article  PubMed  CAS  Google Scholar 

  27. Donie, F. and Reiser, G. (1989) A novel specific binding protein assay for the quantitation of intracellular inositol 1,3,4,5-tetrakisphosphate using a high-affinity InsP4 receptor from cerebellum FEBS Lett. 254, 155–158.

    Article  PubMed  CAS  Google Scholar 

  28. Challis, R. A. J and Nahorski, S. R. (1990) Neurotransmitter and depolarisation-stimulated accumulation of inositol 1,3,4,5-tetrakisphosphate mass in rat cerebral cortex slices. J. Neurochem. 54, 2138–2141.

    Article  Google Scholar 

  29. Palmer, S. and Wakelam, M. J. O (1989) Mass measurement of inositol phosphates Biochim. Biophys. Acta. 1014, 239–246

    Article  CAS  Google Scholar 

  30. Bird, I. M., Nicol, M., Williams, B. C, and Walker, S. W. (1990) Vasopressin stimulates Cortisol secretion and phosphoinositide catabolism in cultured bovine adrenal fasciculata/reticularis cells. J. Mol. Endocrinol. 5, 109–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Bird, I.M. (1994). Analysis of Cellular Phosphoinositides and Phosphoinositols by Extraction and Simple Analytical Procedures. In: Biomembrane Protocols. Methods in Molecular Biology, vol 27. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-250-7:227

Download citation

  • DOI: https://doi.org/10.1385/0-89603-250-7:227

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-250-7

  • Online ISBN: 978-1-59259-514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics