Skip to main content

Measurement of Membrane Fluidity and Membrane Fusion with Fluorescent Probes

  • Protocol
  • 838 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 27))

Abstract

The physicochemical and mechanical properties of phospholipids dispersed in an aqueous medium provide the molecular framework for many of the dynamic properties of cell membranes (1,2). The ability of protein molecules embedded in the plasma membrane to move laterally from one location to another, for example, in lymphocyte capping, depends on the presence of a low-viscosity (fluid) lipid domain in the membrane. Traffic of membrane materials to and from the cell surface depends on the ability of membrane vesicles to fuse with and to bud from the plasma membrane. Such processes are essential for the release of neurotransmitters into the synaptic cleft and play a role in a variety of diseases involving infection of cells by enveloped viruses, such as influenza virus (3).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Houslay, M. D. and Stanley, K. K. (1982) Dynamics of Biological Membranes. Influence on Synthesis, Structure and Function. Chichester, UK.

    Google Scholar 

  2. Evans, W. H. and Graham, J. M (1989) Membrane Structure and Function. IRL at Oxford University Press, Oxford

    Google Scholar 

  3. Huang, R T. C, Rott, R., and Klenk, H.-D. (1981) Influenza viruses cause hemolysis, and fusion of cells. Virology 110, 243–247.

    Article  PubMed  CAS  Google Scholar 

  4. Stubbs, C. D. (1983) Membrane fluidity: Structure and dynamics of membrane lipids, in Essays in Biochemistry, vol. 19 (Campbell, P. N and Marshall, R. D, eds.), Academic, London, pp 1–39.

    Google Scholar 

  5. Fernandez, J. M., Neher, E, and Gomperts, B. D. (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature (London) 312, 453–455.

    Article  PubMed  CAS  Google Scholar 

  6. Hoekstra, D. (1990) Fluorescence assays to monitor membrane fusion: Potential application in biliary lipid secretion. Hepatology 12, 61S–66S.

    PubMed  CAS  Google Scholar 

  7. Radda, G. K. (1972) The design and use of fluorescent probes for membrane studies, in Current Topics in Bioenergetics, vol. 4 (Sanadi, D. R., ed.). Academic, New York, pp 81–126.

    Google Scholar 

  8. Haugland, R. P. (1985) Molecular Probes. Handbook of Fluorescent Probes and Research Chemicals. Molecular. Probes Inc., Eugene, OR.

    Google Scholar 

  9. Feijge, M. A, Heemskerk, J. W., and Hornstra, G. (1990) Membrane fluidity of non-activated and activated human blood platelets Biochim. Biophys. Acta 1025, 173–178

    Article  CAS  Google Scholar 

  10. Bashford C. L., Morgan, C G., and Radda, G K. (1976) Measurement and interpretation of fluorescence polarizations in phospholipid dispersions Biochim. Biophys. Acta 426, 157–172.

    Article  PubMed  CAS  Google Scholar 

  11. Micklem, K. J., Nyaruwe, A., and Pasternak, C. A. (1985) Permeability changes resulting from virus-cell fusion: Temperature-dependence of the contributing processes. Mol. Cell. Biochem. 66, 163–173.

    Article  PubMed  CAS  Google Scholar 

  12. Whitaker, J. E., Haugland, R. P., and Prendergast, F. G. (1991) Spectral and photophysical studies of benzo[c]xanthene dyes-Dual emission pH sensors Anal. Biochem. 194, 330–344.

    Article  PubMed  CAS  Google Scholar 

  13. Brocklehurst, J. R., Freedman, R. B., Hancock, D. J., and Radda, G. K. (1970) Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem J. 116, 721–731

    PubMed  CAS  Google Scholar 

  14. Bashford, C. L., Johnson, L. N., Radda, G. K., and Ritchie, G. A. (1976) Lipid ordering and enzymic activities in chromaffin granule membranes Eur. J. Biochem. 67, 105–114.

    Article  PubMed  CAS  Google Scholar 

  15. Lettre, R, Paweletz, N., Werner, D., and Granzow, C. (1972) Sublines of the Ehrlich-Lettre mouse ascites tumour. A new tool for experimental cell research. Naturwissenschaften 59, 59–63.

    Article  PubMed  CAS  Google Scholar 

  16. Patel, K and Pasternak, C. A. (1983) Ca2+-sensitive permeability changes caused by influenza virus. Biosci. Rep. 3, 749–755.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

C., L.B. (1994). Measurement of Membrane Fluidity and Membrane Fusion with Fluorescent Probes. In: Biomembrane Protocols. Methods in Molecular Biology, vol 27. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-250-7:177

Download citation

  • DOI: https://doi.org/10.1385/0-89603-250-7:177

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-250-7

  • Online ISBN: 978-1-59259-514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics