Skip to main content

Isolation of Parasite Genes Using Synthetic Oligonucleotides

  • Protocol
Protocols in Molecular Parasitology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 21))

Abstract

One of the most powerful ways of identifying genes is to utilize oligonucleotide probes. A prerequisite for this approach is the exist ence of a minimal amount of protein sequence information, either from the parasite protein itself (see Chapter 33) or from homologous proteins of other organisms. Knowledge of parasite protein sequence permits the most accurate design of gene probes, but in many cases isolation and sequencing of the protein in question from the parasite is either not yet possible or is impractical. It is then necessary to resort to the second approach, if sequence availability from other organisms per mits. This involves a greater degree of guesswork, but has been suc cessfully used to date in the identification of a variety of genes from different parasites, such as the dihydrofolate reductase-thymidylate synthase gene (13) , the phosphoglycerate kinase gene (4), and the a- and β-tubulin genes (57) of Plasmodium falciparum, the RNA polymerase large subunit genes of Trypanosoma brucei (8) and of P. falciparum (9), and the 3-hydroxy-3-methylglutaryl-coenzyme A reduc tase from Schistosoma mansoni (10). It has been of particular utility in the case of P. falciparum (11), whose extremely A + T rich genome strongly mitigates against the success of heterologous hybridization probes from “mainstream” eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Hyde, J. E. (1990) Molecular Parasitology. Open University Press/ John Wiley, Chichester, UK, and van Nostrand Reinhold, New York.

    Google Scholar 

  • Erlich, H. A., ed. (1989) PCR Technology: Principles and Applications for DNA Amplification. Stockton Press, New York.

    Google Scholar 

  • Innis, M.A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds. (1990) PCR Protocols: a Guide to Methods and Applications. Academic, San Diego, CA.

    Google Scholar 

  • McPherson, M. J., Quirke, P., and Taylor, G. R., eds. (1991) PCR: A Practical Approach. Oxford University Press, Oxford, UK.

    Google Scholar 

  • White, B. A., ed. (1993) PCR Protocols; Current Methods and Applications. Methods in Molecular Biology, Vol. 15. Humana, Totowa, NJ.

    Google Scholar 

References

  1. Bzik, D. J, LI, W-B, Horn, T., and Inselburg, J. (1987) Molecular cloning and sequence analysis of the Plasmodium falciparum dlhydrofolate reductasethymidylate synthase gene Proc. Nati. Acad. Sci USA 84, 8360–8364

    Article  CAS  Google Scholar 

  2. Cowman, A. F, Morry, M. J, Btggs, B. A., Cross, G. A M., and Foote, S. J. (1988) Amino acid changes linked to pyrtmethamme resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum Proc. Natl. Acad. SCI. USA 85, 9109–9113.

    Article  PubMed  CAS  Google Scholar 

  3. Snewin, V. A, England, S. M., Sims, P. F G, and Hyde, J. E. (1989) Characterisation of the dihydrofolate reductase-thymidylate synthetase gene from human malaria parasites highly resistant to pyrimethamine Gene 76, 41–52.

    Article  PubMed  CAS  Google Scholar 

  4. Hicks, K. E., Read, M, Holloway, S. P., Sims, P F. G, and Hyde, J. E. (1991) The glycolytic pathway of the human malaria parasite: primary sequence analysis of the 3-phosphoglycerate kinase gene of the human malaria parasite Plasmodium falciparum and chromosomal mapping studies Gene 100, 123–129.

    Article  PubMed  CAS  Google Scholar 

  5. Holloway, S. P., Sims, P F. G., Delves, C. J., Scaife, J. G., and Hyde, J. E. (1989) The α-tubulin genes of the human malaria parasite Plasmodium falciparum: sequence analysis of the α-tubulin I gene. Molec. Microbiol 3, 1501–1510

    Article  CAS  Google Scholar 

  6. Holloway, S. P., Gerousis, M., Delves, C J., Sims, P. F G., and Hyde, J. E (1990) The tubulin genes of the human malaria parasite Plasmodium falciparum, their chromosomal location and sequence analysis of the α-tubulin II gene. Mol. Biochem. Parasitol. 43, 257–270.

    Article  PubMed  CAS  Google Scholar 

  7. Delves, C. J, Ridley, R, Goman, M., Holloway, S. P., Hyde, J. E., and Scaife, J. G (1989) Cloning of the β-tubulin gene of Plasmodium falciparum. Molec Microbiol. 3, 1511–1519.

    Article  CAS  Google Scholar 

  8. Evers, R., Hammer, A., Kock, J, Jess, W., Borst, P., Mémet, S., and Cornelissen, A. W. C. A. (1989) Trypanosoma brucet contains two RNA polymerase II largest subunit genes with an altered C-terminal domain. Cell 56, 585–597

    Article  PubMed  CAS  Google Scholar 

  9. Li, W-B., Bzik, D J., Gu, H, Tanaka, M, Fox, B A, and Inselburg, J (1989) An enlarged largest subunit of Plasmodium falciparum RNA polymerase II defines conserved and variable RNA polymerase domains. Nucl. Acids Res. 17, 9621–9636

    Article  PubMed  CAS  Google Scholar 

  10. Rajkovic, A., Simonsen, J. N, Davis, R. E., and Rottman, F. M. (1989) Molecular cloning and sequence analysis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from the human parasite Schistosoma mansoni. Proc. Natl. Acad. Sci. USA 86, 8217–8221.

    Article  PubMed  CAS  Google Scholar 

  11. Hyde, J. E., Kelly, S. L., Holloway, S. P., Snewin, V. A., and Sims, P. F.G. (1989) A general approach to isolating Plasmodium falciparum genes using non-redundant oligonucleotides inferred from protein sequences of other organisms. Mol. Biochem. Parasitol. 32, 247–262

    Article  PubMed  CAS  Google Scholar 

  12. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J, Higuchi, R., Horn, G. T., Mullis, K. B, and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  13. Lathe, R (1985) Synthetic oligonucleotide probes derived from amino acid sequence data; theoretical and practical considerations. J. Mol. Biol 183, 1–12.

    Article  PubMed  CAS  Google Scholar 

  14. Reichardt, J K. V. and Berg, P. (1988) Conservation of short patches of amino acid sequence amongst proteins with a common function but evolutionary distinct origins, implications for cloning genes and for structure-function analysis. Nucl. Acids Res 16, 9017–9026.

    PubMed  CAS  Google Scholar 

  15. Sommer, R. and Tautz, D. (1989) Minimal homology requirements for PCR primers. Nucl. Acids Res. 17, 6749.

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual Vol. 1, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 6.22–6.35.

    Google Scholar 

  17. Gyllensten, U. B. and Erlich, H. A. (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA 85, 7652–7656.

    Article  PubMed  CAS  Google Scholar 

  18. Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. A. D. (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. iProc. Natl. Acad. Sci. USA 85, 9436–9440.

    Article  CAS  Google Scholar 

  19. Murray, V (1989) Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucl. Acids Res. 17, 8889

    Article  PubMed  CAS  Google Scholar 

  20. Casanova, J.-L., Pannetier, C, Jaulin, C, and Kourilsky, P. (1990) Optimal conditions for directly sequencing double-stranded PCR products with Sequenase Nucl Acids Res. 18, 4028.

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual Vol 1, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1.90–1.104, 2 108-2.121.

    Google Scholar 

  22. Knoth, K., Roberds, S, Poteet, C, and Tamkun, M. (1988) Highly degenerate, inosine-containing primers specifically amplify rare cDNA using the polymerase chain reaction.Nucl Acids Res. 16, 10,932.

    Article  PubMed  CAS  Google Scholar 

  23. Ohtsuka, E., Matsuki, S., Ikehara, M., Takahashi, Y., and Matsubara, K. (1985) An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J. Biol Chem. 260, 2605–2608.

    PubMed  CAS  Google Scholar 

  24. Huang, G. C, Page, M. J., Roberts, A. J., Malik, A. N., Spence, H., McGregor, A. M, and Banga, J P. (1990) Molecular cloning of a human thyrotropin receptor cDNA fragment-use of highly degenerate, inosine containing primers derived from aligned amino acid sequences of a homologous family of glycoprotein hormone receptors. FEBS Letts. 264, 193–197.

    Article  CAS  Google Scholar 

  25. Rychlik, W. and Rhoads, R. E. (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA Nucl. Acids Res. 17, 8543–8551.

    Article  PubMed  CAS  Google Scholar 

  26. Hyde, J. E. and Sims, P. F G. (1987) Anomalous dinucleotide frequencies in both coding and non-coding regions from the genome of the human malaria parasite Plasmodium falciparum. Gene 61, 177–187.

    CAS  Google Scholar 

  27. Van Leuven, F (1991) The trouble with PCR machines, fill up the empty spaces. Trends Genet. 7, 142.

    PubMed  Google Scholar 

  28. Don, R H, Cox, P T, Wainwnght, B J., Baker, K, and Mattick, J. S. (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification Nucl. Acids Res 19, 4008

    Article  PubMed  CAS  Google Scholar 

  29. Suggs, S. V, Hirose, T., Miyake, T., Kawashima, E. H, Johnson, M. J., Itakura, K., and Wallace, R. B. (1981) Use of synthetic oligodeoxyribonucleotides for the isolation of specific cloned DNA sequences. ICN-UCLA Symp. Mol. Cell. Biol. 23, 682–693.

    Google Scholar 

  30. Memkoth, J and Wahl, G. (1984) Hybridization of nucleic acids immobilized on solid supports.Anal. Biochem. 138, 267–284.

    Article  Google Scholar 

  31. Wood, W. I., Gitschier, J., Lasky, L. A., and Lawn, R. M. (1985) Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc. Natl Acad Sci. USA 82, 1585–1588.

    Article  PubMed  CAS  Google Scholar 

  32. Jacobs, K A., Rudersdorf, R., Neill, S. D, Dougherty, J. P., Brown, E L, and Fritsch, E F. (1988) The thermal stability of oligonucleotide duplexes is sequence independent in tetraalkylammonium salt solutions: application to identifying recombinant DNA clones. Nucl. Acids Res. 16, 4637–4650.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Hyde, J.E., Holloway, S.P. (1993). Isolation of Parasite Genes Using Synthetic Oligonucleotides. In: Hyde, J.E. (eds) Protocols in Molecular Parasitology. Methods in Molecular Biology™, vol 21. Humana Press. https://doi.org/10.1385/0-89603-239-6:303

Download citation

  • DOI: https://doi.org/10.1385/0-89603-239-6:303

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-239-2

  • Online ISBN: 978-1-59259-508-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics