Skip to main content

Isolation of a Membrane-Bound Enzyme, 5′-Nucleotidase

  • Protocol
Biomembrane Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 19))

Abstract

Membrane enzymes may be peripheral or integral proteins. The attachment of peripheral enzymes is mediated mainly by association with other membrane proteins and consists primarily of hydrophilic, electrostatic interactions. Integral membrane proteins are primarily bound by hydrophobic interactions with the lipid bilayer, either via one or more transmembrane peptide domains (1) or by possession of a glycosyl-phosphatidylinositol (GPI) membrane anchor at the carboxy-terminus (2). The purification of a membrane enzyme thus requires two additional considerations compared to the isolation of a cytosolic enzyme: the isolation of a membrane fraction containing the enzyme and the solubilization of the enzyme from this fraction. Once solubilization has been achieved and maintained, the enzyme can be treated essentially as a soluble enzyme and subjected to a wide range of purification techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer, S. J. (1990) The structure and insertion of integral proteins in membranes. Ann. Rev. Cell Biol. 6, 247–296.

    Article  CAS  PubMed  Google Scholar 

  2. Cross, G. A. M. (1990) Glycolipid anchoring of plasma membrane proteins. Ann. Rev. Cell Biol. 6, 1–39.

    Article  CAS  PubMed  Google Scholar 

  3. Bailyes, E. M., Ferguson, M. A. J., Colaco, C. A. L. S., and Luzio, J. P. (1990) Inositol is a constituent of detergent-solubilized immunoaffinity-purified rat liver 5′-nucleotidase. Biochem. J. 265, 907–909.

    CAS  PubMed  Google Scholar 

  4. Luzio, J. P., Bailyes, E. M., Baron, M., Siddle, K., Mullock, B. M., Geuze, H. J., and Stanley, K. K. (1986) The properties, structure, function, intracellular localization and movement of hepatic 5′-nucleotidase, in Cellular Biology of Ectoenzymes (Kreutzberg, G. W., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 89–116.

    Chapter  Google Scholar 

  5. Luzio, J. P., Baron, M. D., and Bailyes, E. M. (1987) Cell biology, in Mammalian Ectoenzymes (Kenny, A. J. and Turner, A. J., eds.), Elsevier/North Holland, Amsterdam, pp. 111–138.

    Google Scholar 

  6. Misumi, Y., Ogata, S., Hirose, S., and Ikehara, Y. (1990) Primary structure of rat liver 5′-nucleotidase deduced from the cDNA. Presence of the COOH-terminal hydrophobic domain for possible post-translational modification by glycophospholipid. J. Biol. Chem. 265, 2178–2183.

    CAS  PubMed  Google Scholar 

  7. Ogata, S., Hayashi, Y., Misumi, Y., and Ikehara, Y. (1990) Membrane-anchoring domain of rat liver 5′-nucleotidase: identification of the COOH-terminal serine-523 covalently attached with a glycolipid. Biochemistry 29, 7923–2927.

    Article  CAS  PubMed  Google Scholar 

  8. Howell, K. E., Devaney, E., and Gruenberg, J. (1989) Subcellular fractionation of tissue culture cells. Trends Biochem. Sci. 14, 44–47.

    Article  CAS  PubMed  Google Scholar 

  9. Pryde, J. G. (1986) Triton X-l 14: a detergent that has come in from the cold. Trends Biochem. Sci. 11, 160–163.

    Article  CAS  Google Scholar 

  10. Hjelmeland, L. M. and Chrambach, A. (1984) Solubilization of functional membrane proteins. Methods Enzymol. 104, 305–318.

    Article  CAS  PubMed  Google Scholar 

  11. Hooper, N. M. and Turner, A. J. (1988) Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem. J. 250, 865–869.

    CAS  PubMed  Google Scholar 

  12. Helenius, A. and Simons, K. (1975) Solubilization of membranes by detergents. Biochim. Biophys. Acta 415, 29–79.

    Article  CAS  PubMed  Google Scholar 

  13. Metsikko, K., van Meer, G., and Simons, K. (1986) Reconstitution of the fusogenic activity of vesicular stomatitis virus. EMBO. J. 5, 3429–3435.

    CAS  PubMed  Google Scholar 

  14. Newby, A. C., Chrambach, A., and Bailyes, E. M. (1982) The choice of detergents for molecular characterisation and purification of native intrinsic membrane proteins, in Techniques in Lipid and Membrane Biochemistry B409 (Hesketh, T. R., eds.), Elsevier/North Holland, Amsterdam, pp. 1–22.

    Google Scholar 

  15. Bailyes, E. M., Newby, A. C., Siddle, K., and Luzio, J. P. (1982) Solubilization and purification of rat liver 5′-nucleotidase by use of a zwitterionic detergent and a monoclonal antibody immunoadsorbent. Biochem. J. 203, 245–251.

    CAS  PubMed  Google Scholar 

  16. Lis, H. and Sharon, N. (1986) Lectins as molecules and tools. Ann. Rev. Biochem. 55, 35–67.

    Article  CAS  PubMed  Google Scholar 

  17. Siddle, K., Bailyes, E. M., and Luzio, J. P. (1981) A monoclonal antibody inhibiting rat liver 5′-nucleotidase. FEBS Lett. 128, 103–107.

    Article  CAS  PubMed  Google Scholar 

  18. Bailyes, E. M., Soos, M., Jackson, P. J., Newby, A. C., Siddle, K., and Luzio, J. P. (1984) The existence and properties of two dimers of rat liver ecto-5′-nucleotidase. Biochem. J. 221, 369–377.

    CAS  PubMed  Google Scholar 

  19. Bailyes, E. M., Siddle, K., and Luzio, J. P. (1982) Monoclonal antibodies against human alkaline phosphatases. Biochem. Soc. Trans. 13, 107.

    Google Scholar 

  20. Bailyes, E. M., Seabrook, R. N., Calvin, J., Maguire, G. A., Price, C. P., Siddle, K., and Luzio, J. P. (1987) The preparation of monoclonal antibodies to human bone and liver alkaline phosphatase and their use in immunoaffinity purification and in studying these enzymes when present in serum. Biochem. J. 244, 725–733.

    CAS  PubMed  Google Scholar 

  21. Bailyes, E. M., Richardson, P. J., and Luzio, J. P. (1987) Immunological methods applicable to membranes, in Biological Membranes: A Practical Approach (Findlay, J. B. C. and Evans, W. H., eds.), IRL at Oxford University Press, Oxford, pp. 73–101.

    Google Scholar 

  22. Naito, Y. and Lowenstein, J. M. (1981) 5′-nucleotidase from rat heart. Biochemistry 20, 5188–5194.

    Article  CAS  PubMed  Google Scholar 

  23. Harb, J., Meflah, K., Duflos, Y., and Bernard, S. (1983) Purification and properties of bovine liver plasma membrane 5′-nucleotidase. Eur. J. Biochem. 137, 131–138.

    Article  CAS  PubMed  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randell, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  25. Widnell, C. C. (1975) Purification of rat liver 5′-nucleotidase as a complex with sphingomyelin. Methods Enzymol. 32, 368–374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc.

About this protocol

Cite this protocol

Luzio, J.P., Bailyes, E.M. (1993). Isolation of a Membrane-Bound Enzyme, 5′-Nucleotidase. In: Graham, J.M., Higgins, J.A. (eds) Biomembrane Protocols. Methods in Molecular Biology, vol 19. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-236-1:229

Download citation

  • DOI: https://doi.org/10.1385/0-89603-236-1:229

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-236-1

  • Online ISBN: 978-1-59259-506-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics