Pronase (EC

  • Patricia J. Sweeney
  • John M. Walker
Part of the Methods in Molecular Biology™ book series (MIMB, volume 16)


Pronase is the name given to a group of proteolytic enzymes that are produced in the culture supernatant of Streptomyces griseus K-1 (1, 2, 3). Pronase is known to contain at least ten proteolytic components: five serine-type proteases, two Zn2+ endopeptidases, two Zn2+-leucine aminopeptidases, and one Zn2+ carboxypeptidase (4,5). Pronase therefore has very broad specificity, and is used in cases where extensive or complete degradation of protein is required. It has been used, for example, to reveal the protein components of cell organelles by the hydrolysis of tissue slices (6), and as an alternative to proteinase K to remove protein during plasmid DNA (7), chromosomal DNA (8), and RNA isolation (9, 10, 11). Another use of pronase is the production of a protein hydrolysate suitable for amino acid analysis (12,13).


Amino Acid Analysis Protein Hydrolysate Broad Specificity Sodium Carbonate Solution Leucine Aminopeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hiramatsu, A. and Ouchi, T. (1963) On the proteolytic enzymes from the commercial protease preparation of Streptomyces griseus (Pronase P). J. Biochem. (Tokyo) 54(4), 462–464.Google Scholar
  2. 2.
    Narahashi, Y. and Yanagita, M. (1967) Studies on proteolytic enzymes (Pronase) of Streptomyces griseus K-1. Nature and properties of the proteolytic enzyme system. J. Biochem. (Tokyo) 62(6), 633–641.Google Scholar
  3. 3.
    Wählby, S. and Engström, L. (1968) Studies on Streptomyces griseus protease. Amino acid sequence around the reactive serine residue of DFP-sensitive components with esterase activity. Biochim. Biophys. Acta 151, 402–408.PubMedGoogle Scholar
  4. 4.
    Narahashi, Y., Shibuya, K., and Yanagita, M. (1968) Studies on proteolytic enzymes (Pronase) of Streptomyces griseus K-1. Separation of exo-and endopep-tidases of Pronase. J. Biochem. 64(4), 427–437.PubMedGoogle Scholar
  5. 5.
    Yamskov, I. A., Tichonova, T. V., and Davankov, V. A. (1986) Pronase-catalyzed hydrolysis of amino acid amides. Enzyme Microb. Technol. 8, 241–244.CrossRefGoogle Scholar
  6. 6.
    Bouteille, M., Dupuy-Coin, A. M., and Moyne, G. (1975) Techniques of localization of proteins and nucleoproteins in the cell nucleus by high resolution autoradiography and cytochemistry. Methods Enzymol. 40, 3–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Gartland, K. M. A (1988) Large-scale isolation of Ti plasmid DNA, in Methods in Molecular Biology, vol. 4: New Nucleic Acid Techniques (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 465–479.Google Scholar
  8. 8.
    Pollard, J. W., Luqmani, Y., Bateson, A., and Chotai, K. (1984) DNA transformation of mammalian cells, in Methods in Molecular Biology, vol. 2: Nucleic Acids (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 321–332.Google Scholar
  9. 9.
    Doerfler, W. (1969) Non-productive infection of baby hamster kidney cells (BHK 21) with adenovirus type 12. Virology 38(4), 587–606.PubMedCrossRefGoogle Scholar
  10. 10.
    Joklik, W. K. (1981) Procedures for studying transcription and translation of viral and host nucleic acids in interferon-treated cells. Methods Enzymol. 79, 307–330.PubMedCrossRefGoogle Scholar
  11. 11.
    De Maeyer-Guignard, J., De Maeyer, E., and Montagnier, L. (1972) Interferon messenger RNA: Translation in heterologous cells. Proc. Natl. Acad. Sci. USA 69, 1203–1207.PubMedCrossRefGoogle Scholar
  12. 12.
    Hediger, H., Stevens, R. L., Bradenberger, H., and Schmid, K. (1973) Determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides by gas-liquid chromatography. Biochem. J. 133, 551–561.PubMedGoogle Scholar
  13. 13.
    Nomoto, M., Narahashi, Y. and Murakami, M. (1960) A proteolytic enzyme of Streptomyces griseus. Hydrolysis of protein by Streptomyces griseus protease. J. Biochem. 48(4), 593–602.Google Scholar
  14. 14.
    Cole, S. T., Chen-Schmeisser, U., Hindennach, I., and Henning, U. (1983) Apparent bacterophage-binding region of an Escherichia coli K-12 outer membrane protein. J. Bacteriol. 153(2), 581–587.PubMedGoogle Scholar
  15. 15.
    Chang, C. N., Model, P., and Blobel, G. (1979) Membrane biogenesis: cotranslational integration of the bacteriophage F1 coat protein into an Escherichia coli membrane fraction. Proc. Natl. Acad. Sci. USA 76(3), 1251–1255.PubMedCrossRefGoogle Scholar
  16. 16.
    Fox, C. C., Duorak, A M., Peters, S. P., Kagey-Sobotka, A., and Lichtenstein, L. M. (1985) Isolation and characterization of human intestinal mucosal mast cells. J. Immunol. 135(1), 483–491.PubMedGoogle Scholar
  17. 17.
    Nomoto, M., Narahashi, Y., and Murakami, M. (1960) A proteolytic enzyme of Streptomyces griseus. Substrate specificity of Streptomyces griseus protease. J. Biochem. (Tokyo) 48(6), 906–915.Google Scholar
  18. 18.
    Awad, W. M., Soto, A. R., Siegei, S., Skiba, W. E., Bernstrom, G. G., and Ochoa, M. S. (1972) The proteolytic enzymes ofthe K-1 strain of Streptomyces griseus obtained from a commercial preparation (Pronase). Purification of four serine endopeptidases. J. Biol. Chem. 247, 4144–4154.PubMedGoogle Scholar
  19. 19.
    Wiihlby, S. (1968) Studies on Streptomyces griseus protease. Separation of DFP-reacting enzymes and purification of one of the enzymes. Biochim. Biophys. Acta 151, 394–401.Google Scholar
  20. 20.
    Gertler, A. and Trop, M. (1971) The elastase-like enzymes from Streptomyces griseus (Pronase). Isolation and partial characterization. Eur. J. Biochem. 19, 90–96.Google Scholar
  21. 21.
    Wahlby, S. (1969) Studies on Streptomyces griseus protease. Purification of two DFP-reactin enzymes. Biochim. Biophys. Acta 185, 178–185.PubMedGoogle Scholar
  22. 22.
    Yoshida, N., Tsuruyama, S., Nagata, K., Hirayama, K., Noda, K., and Makisumi, S. (1988) Purification and characterization of an acidic amino acid specific endopeptidase of Streptomyces griseus obtained from a commercial preparation (Pronase). J. Biochem. 104, 451–456.PubMedGoogle Scholar
  23. 23.
    Narahashi, Y. (1970) Pronase. Methods Enzymol. 19, 651–664.CrossRefGoogle Scholar
  24. 24.
    Siegel, S., Brady, A. H., and Awad, W. M. (1972) Proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (Pronase). Activity of a serine enzyme in 6M guanidinium chloride. J. Biol. Chem. 247, 4155–4159.PubMedGoogle Scholar
  25. 25.
    Garner, M. H., Garner, W. H., and Gurd, F. R. N. (1974) Recognition of primary sequence variations among sperm whale myolobin components with successive proteolysis procedures. J. Biol. Chem. 249, 1513–1518.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Patricia J. Sweeney
    • 1
  • John M. Walker
    • 1
  1. 1.Division of Biological SciencesUniversity of HertfordshireHatfieldUK

Personalised recommendations