Skip to main content

DNA and RNA Ligases (EC 6.5.1.1, EC 6.5.1.2, and EC 6.5.1.3)

  • Protocol
Enzymes of Molecular Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 16))

Abstract

Ligases are a class of enzymes that catalyze the joining of nucleic acid molecules by the formation of phosphodiester bonds between their termini (1). The nucleic acid substrate to be linked may be DNA or RNA depending on the type of ligase involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engler, M. J. and Richardson C. C. (1982) DNA ligases, in The Enzymes XV Part B (Boyer, P. D., ed.), Academic, New York, pp. 3–29.

    Google Scholar 

  2. Gellert, M. (1967) Formation of covalent circles of lambda DNA by E. coli extracts. Proc. Natl. Acad. Sci. USA 57, 148–155.

    Article  PubMed  CAS  Google Scholar 

  3. Laipis, P. J., Olivera, B. M., and Ganesan, A.T. (1969) Enzymatic cleavage and repair of transforming DNA. Proc. Natl. Acad. Sci. USA 62, 289–296.

    Article  PubMed  CAS  Google Scholar 

  4. Weiss, B. and Richardson, C. C. (1967) Enzymatic breakage and joining of deoxyribonucleic acid. I. Repair of single strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl. Acad. Sci. USA 57, 1021–1028.

    Article  PubMed  CAS  Google Scholar 

  5. Soderhall, S. and Lindhahl, T. (1976) DNA ligases of eukaryotes. FEBS Lett. 67, 1–7.

    Article  PubMed  CAS  Google Scholar 

  6. Pfeiffer, P. and Vielmetter, W. (1988) Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res. 16, 907–924.

    Article  PubMed  CAS  Google Scholar 

  7. North, P., Ganesh, A., and Thacker, J. (1990) The joining of double strand breaks in DNA by human cell extracts. Nucleic Acids Res. 18, 6205–6210.

    Article  PubMed  CAS  Google Scholar 

  8. Okasaki, K., Okasaki, T., Sakabe, K., Sugimoto, K, and Sugino, A. (1968) Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc. Natl. Acad. Sci. USA 59, 598–605.

    Article  Google Scholar 

  9. Boyce, R. P. and Howard-Flanders, P. (1964) Release of ultraviolet light induced thymine dimers from DNA of E. coli K-12. Proc. Natl. Acad. Sci. USA 51, 293–300.

    Article  PubMed  CAS  Google Scholar 

  10. Johnston, L. H. and Nasmyth, K A. (1978) Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature (London) 274, 891–893.

    Article  CAS  Google Scholar 

  11. Panasenko, S. M., Cameron, J. R., Davis, R. W., and Lehman, I. R. (1977) Five hundred-fold overproduction of DNA ligase after induction of a hybrid lambda lysogen constructed in vitro. Science 196, 188–189.

    Article  PubMed  CAS  Google Scholar 

  12. Panasenko, S. M., Alazard, R. J., and Lehman, I. R. (1978) A simple three step procedure for the large scale purification of DNA ligase from a hybrid lambda lysogen constructed in vitro. J. Bioi. Chern. 253, 4590–4592.

    CAS  Google Scholar 

  13. Murray, N. E., Bruce, S. A., and Murray, K. (1979) Molecular cloning of the DNA ligase gene from bacteriophage T4. II. Amplification and preparation of the gene product. J. Mol. BioI. 132, 493–505.

    Article  CAS  Google Scholar 

  14. Modrich, P., Anraku, Y., and Lehman, I. R. (1973) Deoxyribonucleic acid ligase. Isolation and physical characterization of the homogeneous enzyme from Escherichia coli. J. BioI. Chern. 248, 7495–7501.

    CAS  Google Scholar 

  15. Knopf, K. W. (1977) Simple isolation method and assay for T4 DNA ligase and characterization of the purified enzyme. Eur. J. Biochem. 73, 33–38.

    Article  PubMed  CAS  Google Scholar 

  16. Higgins, N. P. and Cozzarelli, N. R. (1980) DNA joining enzymes: a review. Methods Enzymol. 68, 50–71.

    Article  Google Scholar 

  17. Weiss, B., Jacquemin-Sablon, A., Live, T. R., Fareed, G. C., and Richardson, C. C. (1968) Enzymatic breakage and joining of deoxyribonucleic acid. VI. Further purification and properties of polynucleotide liase from Escherichia coli infected with bacteriophage T4. J. BioI. Chem. 243, 4543–4555.

    CAS  Google Scholar 

  18. Sgaramella, V. and Khorana, H. G. (1972) Studies on polynucleotides. CXII. Total synthesis of the structural gene for an alanine transfer RNA from yeast. Enzymic joining of chemically synthesized polynucleotides to form the DNA duplex representing nucleotide sequence 1 to 20. J. Mol. Biol. 72, 427–444.

    Article  PubMed  CAS  Google Scholar 

  19. Shortle, D., Grisafi, P., Benkovic, S. J., and Botstein, D. (1982) Gap misrepair mutagenesis: efficient site-directed induction of transition, transversion, and frameshift mutations in vitro. Proc. Natl. Acad. Sci. USA 79, 1588–1592.

    Article  PubMed  CAS  Google Scholar 

  20. Modrich, P., Lehman, I. R., and Wang, J. C. (1972) Enzymatic joining of polynucleotides. XI. Reversal of Escherichia coli deoxyribonucleic acid ligase reaction. J. BioI. Chern. 247, 6370–6372.

    CAS  Google Scholar 

  21. Nath, K. and Hurwitz, J. (1974) Covalent attachment of polyribonucleotides to polydeoxyribonucleotides catalyzed by deoxyribonucleic acid ligase. J. Biol. Chem. 249, 3680–3688.

    PubMed  CAS  Google Scholar 

  22. Kleppe, K., Van de Sande, J. H., and Khorana, H. G. (1970) Polynucleotide ligase catalysed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribo-oligonucleotides on deoxyribopolynucleotide templates. Proc. Natl. Acad. Sci. USA 67, 68–73.

    Article  PubMed  CAS  Google Scholar 

  23. Modrich, P. and Lehman, I. R. (1973) Deoxyribonucleic acid ligase. A steady state kinetic analysis of the reaction catalysed by the enzyme from Escherichia coli. J. Biol. Chem. 248, 7502–7511.

    CAS  Google Scholar 

  24. Sugino, A., Goodman, H. M., Heynecker, H. L., Shine, J., Boyer, H. W., and Cozzarelli, N. R. (1977) Interaction of bacteriophage T4 RNA and DNA ligases in joining duplex DNA at base paired ends. J. Biol. Chem. 252, 3987–3994.

    PubMed  CAS  Google Scholar 

  25. Olivera, B. M. and Lehman, I. R. (1967) Diphosphopyridine nucleotide: A cofactor for the polynucleotide joining enzyme from Escherichia coli. Proc. Natl. Acad. Sci. USA 57, 1700–1704.

    Article  PubMed  CAS  Google Scholar 

  26. Hinkle, D. C. and Richardson, C. C. (1975) Bacteriophage T7 deoxyribonucleic acid replication in vitro. Purification and properties of the gene 4 protein of bacteriophage T7. J. Biol. Chem. 250, 5523–5529

    PubMed  CAS  Google Scholar 

  27. Dugaiczyk, A., Boyer, H. W., and Goodman, H. M. (1975) Ligation of EcoRI endonuclease generated DNA fragments into linear and circular structures. J. Mol. Biol. 96, 171–184.

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi, M., Yamaguchi, E., and Uchida, T. (1984) Thermophilic DNA ligase. Purification and properties of the enzyme from Thermus thermophilus HB8. J. Biol Chem. 259, 10,041–10,047.

    PubMed  CAS  Google Scholar 

  29. Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad Sci. USA 88, 189–193.

    Article  PubMed  CAS  Google Scholar 

  30. Saiki, R. K., Scharf, S. J., Faloona, F., Mullis, K B., Horn, G. T., Ehrlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction-site analysis for diagnosis of sickle cell anaemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  31. Ferretti, I. and Sgaramella, V. (1981) Temperature dependence of the joining by DNA ligase of the termini produced by type II restriction endonuclease. Nucleic Acids Res. 9, 85–93.

    Article  PubMed  CAS  Google Scholar 

  32. Pohl, F. M., Thomae, R., and Karst, A. (1982) Temperature dependence of the activity of DNA modifying enzymes: endonucleases and DNA ligase. Eur. J. Biochem. 123, 141–152.

    Article  PubMed  CAS  Google Scholar 

  33. Zimmerman, S. B., Little, 1. W., Oshinsky, C. K., and Gellert, M. (1967) Enzymatic joining of DNA strands: a novel reaction of diphosphopyridine nucleotide. Proc. Natl. Acad. Sci. USA 57, 1841–1848.

    Article  PubMed  CAS  Google Scholar 

  34. Fareed, G. C., Wilt, E. M., and Richardson, C. C. (1971) Enzymatic breakage and joining of deoxyribonucleic acid. VIII. Hybrids of ribo-and deoxyribo-nucleotide homopolymers as substrates for polynucleotide ligase of bacterioph-age T4. J. Biol. Chem. 246, 925–932.

    PubMed  CAS  Google Scholar 

  35. Raae, A. J., Kleppe, R. K., and Kleppe, K. (1975) Kinetics and effect of salts and polyamines on T4 polynucleotide ligase. Eur. J. Biochem. 60, 437–443.

    Article  PubMed  CAS  Google Scholar 

  36. Modrich, P. and Lehman, I. R. (1970) Enzymatic joining of polynucleotides. IX. A simple and rapid assay of polynucleotide joining (ligase) activity by measurement of circle formation from linear deoxyadenylate-deoxy thymidylate copolymer. J. Biol. Chem. 245, 3626–3631.

    PubMed  CAS  Google Scholar 

  37. Weiss B. and Richards C. C. (1967) The 5′ terminal dinucleotides of the separated strands of T7 bacteriophage deoxyribonucleic acid. J. Mol. Biol. 23, 405–415.

    Article  PubMed  CAS  Google Scholar 

  38. Weiss, B., Thompson, A., and Richardson, C. C. (1968) Enzymatic breakage and joining of deoxyribonucleic acid. VII. Properties of the enzyme-adenylate intermediate in the polynucleotide ligase reaction. J. Biol. Chem. 243, 4556–4563.

    PubMed  CAS  Google Scholar 

  39. Cozzarelli, N. R., Melechen, N. E., Jovin, T. M., and Kornberg, A. (1967) Polynucleotide cellulose as a substrate for a polynucleotide ligase induced by phage T4. Biochem. Biophys. Res. Commun. 28, 578–586.

    Article  PubMed  CAS  Google Scholar 

  40. Weis, B., Live, T. R., and Richardson, C. C. (1968) Enzymatic breakage and joining of deoxyribonucleic acid. V. End group labeling and analysis of deoxyribonucleic acid containing single strand breaks. J. Biol. Chem. 243, 4530–4542.

    Google Scholar 

  41. Triglia, T., Peterson, M. G., and Kemp, D. J. (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 16, 8186.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, R. and Kaiser, A. D. (1967) Mapping the 5′-terminal nucleotides of the DNA of bacteriophage lambda and related phages. Proc. Natl. Acad. Sci. USA 57, 170–177.

    Article  PubMed  CAS  Google Scholar 

  43. Wu, R. and Kaiser, A. D. (1968) Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. J. Mol. Biol. 35, 523–537.

    Article  PubMed  CAS  Google Scholar 

  44. Wallace, R. B., Johnson, P. F., Tanaka, S., Schold, M., Itakura, K., and Abelson, J. (1980) Directed deletion of a yeast transfer RNA intervening sequence. Science 209, 1396–1400.

    Article  PubMed  CAS  Google Scholar 

  45. Okayama, H. and Berg, P. (1982) High efficiency cloning of full length cDNA. Mol. Cell Biol. 2, 161–170.

    PubMed  CAS  Google Scholar 

  46. Gaastra, W. and Hansen, K. (1984) Ligation of DNA with T4 DNA ligase, in Methods in Molecular Biology, vol 2. Nucleic Acids (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 225–230.

    Google Scholar 

  47. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Strategies for cloning in plasmid vectors. Ligation of termini created by restriction enzymes. Ligases, kinases and phosphatases, in Molecular Cloning, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1.53–1.73, 5.10–5.14, 5.61–5.67.

    Google Scholar 

  48. Promega Protocols and Applications Guide (1989) Cloning of DNA Inserts. Promega Corp., Madison, WI, p. 37.

    Google Scholar 

  49. Sgaramella, V. and Ehrlich, S. D. (1978) Use of the T4 polynucleotide ligase in the joining of flush-ended DNA segments generated by restriction endo-nucleases. Eur. J. Biochem. 86, 531–537.

    Article  PubMed  CAS  Google Scholar 

  50. Hung, M.-C. and Wensink, P. C. (1984) Different restriction enzyme generated sticky ends can be joined in vitro. Nucleic Acids Res. 12, 1863–1874.

    Article  PubMed  CAS  Google Scholar 

  51. Korch, C. (1987) Cross index for improving cloning selectivity by partially filling in 5′ extensions of DNA produced by type II restriction endonucleases. Nucleic Acids Res. 15, 3199–3220.

    Article  PubMed  CAS  Google Scholar 

  52. Ferretti, L. and Sgaramella, V. (1981) Specific and reversible inhibiion of the blunt end joining activity of the T4 DNA ligase. Nucleic Acids Res. 9, 3695–3705.

    Article  PubMed  CAS  Google Scholar 

  53. Rusche, J. R. and Howard-Flanders, P. (1985) Hexamine cobalt chloride promotes intermoleclar ligation of blunt end DNA fragments by T4 DNA ligase. Nucleic Aids Res. 13, 1997–2008.

    Article  CAS  Google Scholar 

  54. Pheiffer, B. H. and Zimmerman, S. B. (1983) Polymer stimulated ligation: enhanced blunt-or cohesive-end ligation of DNA or deoxyribooligonucleotides by T4 DNA ligase in polymer solutions. Nucleic Acids Res. 11, 7853–7871.

    Article  PubMed  CAS  Google Scholar 

  55. Hayashi, K., Nakazawa, M., Ishizaki, Y., Hiraoka, N., and Obayashi, A. (1986) Regulation of inter-and intra-molecular ligation in the presence of polyethylene glycol. Nucleic Acids Res. 14, 7617–7631.

    Article  PubMed  CAS  Google Scholar 

  56. Revie, D., Smith, D. W., and Yee, T. W. (1988) Kinetic analysis for optimisation of DNA ligation reactions. Nucleic Acids Res. 16, 10,301–10,321.

    Article  PubMed  CAS  Google Scholar 

  57. Leis, J., Silbe, R., Malathi, V. G., and Hurwitz, J. (1972) Studies on transcription and ligation of RNA, in Advances in the Biosciences, vol. 8 (Raspé, G., ed.), Pergamon, New York, pp. 117–144.

    Google Scholar 

  58. Uhlenbeck, O. C. and Gumport, R. I. (1982) T4 RNA ligase, in The Enzymes XV Part B (Boyer, P. D., ed.), Academic, New York, pp. 31–58.

    Google Scholar 

  59. Silber, R., Malathi, V. G., and Hurwitz, J. (1972) Purification and properties of bacteriophage T4 induced RNA ligase. Proc. Natl. Acad. Sci. USA 69, 3009–3013.

    Article  PubMed  CAS  Google Scholar 

  60. Sugino, A, Snopek, T. J., and Cozzarelli, N. R. (1977) Bacteriophage T4 RNA ligase. Reaction intermediates and interaction of substrates. J. Biol. Chem. 252, 1732–1738.

    PubMed  CAS  Google Scholar 

  61. Abelson, J. (1979) RNA processing and the intervening sequence problem. Annu. Rev. Biochern. 48, 1035–1069.

    Article  CAS  Google Scholar 

  62. Snopek, T. J., Wood, W. B., Conley, M. P., Chen, P., and Cozzarelli, N. R. (1977) Bacteriophage T4 RN ligase is gene 63 product, the protein that promotes tail fibre attachment to the baseplate. Proc. Natl. Acad. Sci. USA 74, 3355–3359.

    Article  PubMed  CAS  Google Scholar 

  63. Last, J. A and Anderson, W. F. (1976) Purification and properties of bacteriophage T4-induced RNA ligase. Arch. Biochern. Biophys. 174, 167–176.

    Article  CAS  Google Scholar 

  64. Moseman-McCoy, M. I., Lubbens, T. H., and Gumport, R. I. (1979) The purification of nuclease-free T4 RNA ligase Biochirn. Biophys. Acta 562, 149–161.

    Google Scholar 

  65. Vasilenko, S. K., Veniyaminova, A G., Yamkovoy, V. I., and Maiyorov, V. I. (1979) Bacteriophage T4 RNA ligase. 1. Purification, enzyme assay, dimer form. Bioorg. Khim. 5, 621–627.

    CAS  Google Scholar 

  66. Walker, G. C., Uhlenbeck, O. C., Bedows, E., and Gumport, R. I. (1975) T4 induced RNA ligase joins single stranded oligoribonucleotides. Proc. Natl. Acad. Sci. USA 72, 122–126.

    Article  PubMed  CAS  Google Scholar 

  67. England, T. E., Gumport, R. I., and Uhlenbeck, O. C. (1977) Dinucleoside pyrophosphates are substrates for T4 induced RNA ligase. Proc. Natl. Acad. Sci. USA 74, 4839–4842.

    Article  PubMed  CAS  Google Scholar 

  68. Hinton, D. M. and Gumport, R. I. (1979) The synthesis of oligodeoxyribo-nucleotides using RNA ligase. Nucleic Acids Res. 7, 453–464.

    Article  PubMed  CAS  Google Scholar 

  69. Peattie, D. A (1979) Direct chemical method for sequencing RNA. Proc. Natl. Acad. Sci. USA 76, 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  70. Lockard, R. E., Alzner-Deweerd, B., Heckman, J. E., MacGee, J., Tabor, M. W., and RajBhandary, U. L. (1978) Sequence analysis of 5′[32P]labeled mRNA and tRNA using polyacrylamide gel electrophoresis. Nucleic Acids Res. 5, 37–56.

    Article  PubMed  CAS  Google Scholar 

  71. Hecht, S. M., Alford, B. L., Kuroda, Y., and Kitano, S. (1978) Chemical aminoacylation of tRNAs. J. Biol. Chern. 253, 4517–4520.

    CAS  Google Scholar 

  72. Donis-Keller, H. (1979) Site specific enzymatic cleavage of RNA. Nucleic Acids Res. 7, 179–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc.

About this protocol

Cite this protocol

Maunders, M.J. (1993). DNA and RNA Ligases (EC 6.5.1.1, EC 6.5.1.2, and EC 6.5.1.3). In: Burrell, M.M. (eds) Enzymes of Molecular Biology. Methods in Molecular Biology™, vol 16. Humana Press. https://doi.org/10.1385/0-89603-234-5:213

Download citation

  • DOI: https://doi.org/10.1385/0-89603-234-5:213

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-322-1

  • Online ISBN: 978-1-59259-503-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics