Skip to main content

Glycosyltransferases as Tools in Cell Biological Studies

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 14))

Abstract

Complex carbohydrates consist of an amazingly diverse array of highly branched structures (1,2). This branching structure precludes the use of a linear template for assembly, as in the case of protein and nucleic acid biosynthesis. In contrast, the biosynthesis of these molecules is dependent on a series of highly specific enzymes, glycosyltransferases, which elongate growing saccharide chains sequentially (1,2). The product of each reaction becomes the substrate for the next. Thus, these enzymes must specifically recognize the structure of the acceptor carbohydrate and add a monosaccharide in a particular linkage at a precise location. In most cases, one enzyme exists for each glycosidic bond that is formed (3). The high level of specificity displayed by glycosyltransferases allows them to synthesize complex structures with a high degree of fidelity. Regulating this fidelity appears to be crucial for the biological functions of complex carbohydrates in vivo (4).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beyer, T. A., Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill, R. L. (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv. Enzymol. 52, 23–175.

    PubMed  CAS  Google Scholar 

  2. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.

    Article  PubMed  CAS  Google Scholar 

  3. Roseman, S. (1970) The synthesis of complex carbohydrates by multiglyco-syltransferase systems and their potential function in intercellular adhesion. Chem. Phys. Lipids. 5, 270–297.

    Article  PubMed  CAS  Google Scholar 

  4. Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.

    Article  PubMed  CAS  Google Scholar 

  5. Whiteheart, S. W. and Hart, G. W. (1987) Sialyltransferases as specific cell surface probes of terminal and penultimate saccharide structures on living cells. Anal. Biochem. 163, 123–135.

    Article  PubMed  CAS  Google Scholar 

  6. Passaniti, A. and Hart, G. W. (1988) Cell surface sialylation and tumor metastasis. Metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. J. Biol. Chem. 263, 7591–7603.

    PubMed  CAS  Google Scholar 

  7. Powell, L. D., Whiteheart, S. W., and Hart, G. W. (1987) Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction. J. Immunol. 139, 262–270.

    PubMed  CAS  Google Scholar 

  8. Sadler, J. E., Paulson, J. C., and Hill, R. L. (1979) The role of sialic acid in the expression of human MN blood group antigens. J. Biol. Chem. 254, 2112–2119.

    PubMed  CAS  Google Scholar 

  9. Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, H. D. (1986) Influenza C virus uses 9-O-acetykl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261, 5947–5951.

    PubMed  CAS  Google Scholar 

  10. Torres, C-R. and Hart, G. W. (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. J. Biol. Chem. 259,5, 3308–3317.

    PubMed  CAS  Google Scholar 

  11. Viitala, J. and Finne, J. (1984) Specific cell-surface labeling of polyglycosyl chains in human erythrocytes and HL-60 cells using endo-beta-galactosi-dase and galactosyltransferase. Eur. J. Biochem. 138, 393–397.

    Article  PubMed  CAS  Google Scholar 

  12. Passaniti, A. and Hart, G. W. (1990) Metastasis-associated murine melanoma cell surface galactosyltransferase: Characterization of enzyme activity and identification of the major surface substrates. Cancer Res. 50, 7261–7271.

    PubMed  CAS  Google Scholar 

  13. Reichner, J. S., Whiteheart, S. W., and Hart, G. W. (1988) Intracellular trafficking of cell surface sialoglycoconjugates. J. Biol. Chem. 263, 16,316–16,326.

    PubMed  CAS  Google Scholar 

  14. Benko, D. M., Haltiwanger, R. S., Hart, G. W., and Gibson, W. (1988) Virion basic phosphoprotein from human cytomegalovirus contains O-linked N-acetylglucosamine. Proc. Natl. Acad. Sd. USA 85, 2573–2577.

    Article  CAS  Google Scholar 

  15. Holt, G. D. and Hart, G. W. (1986) The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049–8057.

    PubMed  CAS  Google Scholar 

  16. Holt, G. D., Haltiwanger, R. S., Torres, C. R., and Hart, G. W. (1987) Erythrocytes contain cytoplasmic glycoproteins. O-linked GlcNAc on Band 4.1. J. Biol. Chem. 262, 14,847–14,850.

    PubMed  CAS  Google Scholar 

  17. Machamer, C. E. and Cresswell, P. (1984) Monensin prevents terminal gly-cosylation of the N-and O-linked oligosaccharides of the HLA-DR-associ-ated invariant chain and inhibits its dissociation from the α-βchain complex. Proc. Natl. Acad. Sd. USA 81, 1287–1291.

    Article  CAS  Google Scholar 

  18. Duncan, J. R. and Kornfeld, S. (1988) Intracellular movement of two man-nose 6-phosphate receptors: return to the Golgi apparatus. J. Cell Biol. 106, 617–628.

    Article  PubMed  CAS  Google Scholar 

  19. Thilo, L. (1983) Labeling of plasma membrane glycoconjugates by terminal glycosylation (galactosyltransferase and glycosidase). Methods Enzymol 98, 415–420.

    Article  PubMed  CAS  Google Scholar 

  20. Paulson, J. C., Sadler, J. E., and Hill, R. L. (1979) Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases. J. Biol. Chem. 254, 2120–2124.

    PubMed  CAS  Google Scholar 

  21. Paulson, J. C. and Rogers, G. N. (1987) Resialylated erythrocytes for assessment of the specificity of sialyloligosaccharide binding proteins. Methods Enzymol. 138, 162–168.

    Article  PubMed  CAS  Google Scholar 

  22. Hill, R. L., Beyer, T. A., Paulson, J. C., Prieels, J. P., Rearick, J. I., and Sadler, J. E. (1980) Glycosyl transferases in oligosaccharide biosynthesis and their use in structure-function analysis of glycoproteins, in Frontiers of Bioorganic Chemistry and Molecular Biology (Ananchenko, S. N., ed.), Pergamon, Oxford and New York, pp. 63–71.

    Google Scholar 

  23. Whiteheart, S. W., Passaniti, A., Reichner, J. S., Holt, G. D., Haltiwanger, R. S., and Hart, G. W. (1989) Glycosyltransferase probes. Methods Enzymol. 179, 82–95.

    Article  PubMed  CAS  Google Scholar 

  24. Sadler, J. E., Beyer, T. A., Oppenheimer, C. L., Paulson, J. C., Prieels, J. P., Rearick, J. I., and Hill, R. L. (1982) Purification of mammalian glycosyltransferases. Methods Enzymol. 83, 458–514.

    Article  PubMed  CAS  Google Scholar 

  25. Sadler, J. E., Beyer, T. A., and Hill, R. L. (1981) Affinity chromatography of glycosyltransferases. J. Chromatogr. 215, 181–194.

    Article  PubMed  CAS  Google Scholar 

  26. Paulson, J. C. and Colley, K. J. (1989) Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17,615–17,618.

    PubMed  CAS  Google Scholar 

  27. Colley, K. J., Lee, E. U., Adler, B., Browne, J. K., and Paulson, J. C. (1989) Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J. Biol. Chem. 264, 17,619–17,622.

    PubMed  CAS  Google Scholar 

  28. Larsen, R. D., Rajan, V. P., Ruff, M. M., Kukowska-Latallo, J., Cummings, R. D., and Lowe, J. B. (1989) Isolation of a cDNA encoding a murine UDPgalactose: β-D-galactosyl-1,4-N-acetyl-D-glucosaminide α-1,3-galactosyltransferase: Expression cloning by gene transfer. Proc. Natl. Acad. Sci. USA 86, 8227–8231.

    Article  PubMed  CAS  Google Scholar 

  29. Weinstein, J., de Souza-e-Silva, U., and Paulson, J. C. (1982) Purification of a Gal βl,4GlcNAc α2,6 sialyltransferase and a Gal β1,,3(4)GlcNAc α2,3 sialyltransferase to homogeneity from rat liver.J. Biol. Chem. 257,13,835–13,844.

    PubMed  CAS  Google Scholar 

  30. Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill, R. L. (1979) Purification to homogeneity of a β-galactoside α2,3 sialytransferase and partial purification of an α-N-acetygalactosaminide α2,6 sialytransferase from porcine submaxillary glands. J. Biol. Chem. 254, 4434–4443.

    PubMed  CAS  Google Scholar 

  31. Trayer, I. P. and Hill, R. L. (1971) The purification and properties of the A protein of lactose synthetase. J. Biol. Chem. 246, 6666–6675.

    PubMed  CAS  Google Scholar 

  32. Oppenheimer, C. L. and Hill, R. L. (1981) Purification and characterization of a rabbit liver α1,3 mannoside β1,2 N-acetylglucosaminyltransferase. J. Biol. Chem. 256, 799–804.

    PubMed  CAS  Google Scholar 

  33. Nishikawa, Y., Pegg, W., Paulsen, H., and Schachter, H. (1988) Control of glycoprotein synthesis: Purification and characterization of rabbit liver UDP-N-acetylglucosamine: α-3-D-mannoside β-l,2-N-acetylglucosaminyltransferase I. J. Biol. Chem. 263, 8270–8281.

    PubMed  CAS  Google Scholar 

  34. Powell, L. D. and Hart, G. W. (1986) Quantitation of picomole levels of N-acetyl-and N-glycolylneuraminic acids by a HPLC-adaptation of the thiobarbituric acid assay. Anal. Biochem. 157, 179–185.

    Article  PubMed  CAS  Google Scholar 

  35. Yamashita, K., Mizuochi, T., and Kobata, A. (1982) Analysis of oligosaccharides by gel filtration. Methods Enzymol. 83, 105–126.

    Article  PubMed  CAS  Google Scholar 

  36. Van Pelt, J., Damm, J. B., Kamerling, J. P., and Vliegenthart, J. F. (1987) Separation of sialyl-oligosaccharides by medium pressure anion-exchange chromatography on Mono Q. Carbohydr. Res. 169, 43–51.

    Article  PubMed  Google Scholar 

  37. Hardy, M. R. and Townsend, R. R. (1988) Separation of positional isomers of oligosaccharides and glycopeptides by high-performance anion-exchange chromatography with pulsed amperometric detection. Proc. Natl. Acad. Sci. USA 85, 3289–3293.

    Article  PubMed  CAS  Google Scholar 

  38. Porzig, E. F. (1978) Galactosyltransferase activity of intact neural retinal cells from the embryonic chicken. Dev. Biol. 67, 114–126.

    Article  PubMed  CAS  Google Scholar 

  39. Kearse, K. P. and Hart, G. W. (1991) Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc. Natl. Acad. Sci. USA 88, 1701–1705.

    Article  PubMed  CAS  Google Scholar 

  40. Lau, J. T. Y. and Carlson, D. M. (1981) Galactosyltransferase activities in rat intestinal mucosa: Inhibition of nucleotide pyrophosphatase. J. Biol. Chem. 256, 7142–7145.

    PubMed  CAS  Google Scholar 

  41. Faltynek, C. R., Silbert, J. E., and Hof, L. (1981) Inhibition of the action of pyrophosphatase and phosphatase on sugar nucleotides. J. Biol. Chem. 256, 7139–7141.

    PubMed  CAS  Google Scholar 

  42. Tarentino, A. L., Gomez, C. M., and Plummer, T. H., Jr. (1985) Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F. Biochemistry 24, 4665–4671.

    Article  PubMed  CAS  Google Scholar 

  43. Spiro, R. G. (1972) Study of the carbohydrates of glycoproteins. Methods Enzymol. 28, 3–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Haltiwanger, R.S., Hart, G.W. (1993). Glycosyltransferases as Tools in Cell Biological Studies. In: Hounsell, E.F. (eds) Glycoprotein Analysis in Biomedicine. Methods in Molecular Biology, vol 14. Humana Press. https://doi.org/10.1385/0-89603-226-4:175

Download citation

  • DOI: https://doi.org/10.1385/0-89603-226-4:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-226-2

  • Online ISBN: 978-1-59259-501-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics