The Role of Cell Adhesion Molecules in Neurite Growth

  • Daren Ure
  • Ann Acheson
Part of the Neuromethods book series (NM, volume 23)


Stereotyped patterns of axonal growth and axon-axon bundling leading to tract formation are common features of nervous system development in organisms as diverse as grasshoppers and humans. In grasshoppers, axons growing from individual, identified neurons follow stereotyped pathways, making turns at choice points, which suggests that the pathways bear specific guidance cues (Goodman et al, 1982; Raper et al., 1983a,Raper et al., 1983b). Such path-following by growth cones has been hypothesized to result from an adhesive preference for molecules on the surfaces of “guidepost” cells strategically placed along the way, or for recognition molecules on other axons. These guidepost cells and previously laid down axons together are thought to create labeled pathways (Goodman et al., 1982; Raper et al., 1983a,Raper et al., 1983b,Raper et al., 1983c; Raper et al., 1984) that guide subsequent neurite growth. Labels that create adhesive preferences could be specific molecules on glial cells or axons, or could be components of the extracellular matrix. The adhesive preferences of growth cones for a given axonal or glial surface seem to be absolute rather than hierarchical, and specific guidance cues are required for both axon initiation and continued axon extension (Bastiani and Goodman, 1986; Bastiani et al., 1986; du Lac et al., 1986).


Schwann Cell Neurite Growth Growth Cone Neural Cell Adhesion Molecule Culture Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Acheson A. and Rutishauser U. (1988) Neural cell adhesion molecule regulates cell contact-mediated changes in choline acetyltransferase activity of embryonic chick sympathetic neurons. J. Cell Biol. 106, 479–486.PubMedCrossRefGoogle Scholar
  2. 2.
    Acheson A., Edgar D. Timpl R., and Thoenen H. (1986) Laminin increases both levels and activity of tyrosine hydroxylase in calf adrenal chromaffin cells. J. Cell Biol. 102, 151–159.PubMedCrossRefGoogle Scholar
  3. 3.
    Aletta J. M. and Greene L. A. (1988) Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J. Neurosd. 8, 1425–1435.Google Scholar
  4. 4.
    Aumailley M., Nurcombe V., Edgar D., Paulsson M., and Timpl R. (1987) The cellular interactions of laminin fragments. J. Bid. Chem. 262, 11532–11538.Google Scholar
  5. 5.
    Barnes D. (1984) Attachment factors in cell culture in Mammalian Cell Culture, The Use of Serum-Free Hormone-Supplemented Media (Mather J. P., ed.), Plenum Press, New York, pp. 195–237.CrossRefGoogle Scholar
  6. 6.
    Baron-Van Evercooren A., Kleinman H. K., Ohno S., Marangos P., Schwartz J. P. and Dubois-Dalcq M. E. (1982) Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures. J. Neurosci. Res. 8, 179–193.PubMedCrossRefGoogle Scholar
  7. 7.
    Bastiani M. J. and Goodman C. S. (1986) Guidance of neuronal growth cones in the grasshopper embryo. I. Recognition of specific glial pathways. J. Neurosci. 6, 3542–3551.PubMedGoogle Scholar
  8. 8.
    Bastiani M. J., du Lac S., and Goodman C. S. (1986) Guidance of neuronal growth cones in the grasshopper embryo. I. Recognition of a specific axonal pathway by the pCC neurons. J. Neurosci. 6, 3518–3531.PubMedGoogle Scholar
  9. 9.
    Begovac P. C. and Shur B. D. (1990) Cell surface galactosyltransferase mediates the initiation of neurite outgrowth from PC12 cells on laminin. J. Cell Biol. 110, 461–470.PubMedCrossRefGoogle Scholar
  10. 10.
    Benfey M. and Aguayo A. J. (1982) Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature (Lond.) 296, 150–152.CrossRefGoogle Scholar
  11. 11.
    Bixby J. L. and Reichardt L. F. (1987) Effects of antibodies to neural cell adhesion molecule (N-CAM) on the differentiation of neuromuscular contacts between ciliary ganglion neurons and myotubes in vitro. Dev. Biol. 119, 363–372.PubMedCrossRefGoogle Scholar
  12. 12.
    Bixby J. L. and Zhang R. (1990) Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J. Cell Biol. 110, 1253–1260.PubMedCrossRefGoogle Scholar
  13. 13.
    Bixby J. L., Pratt R. S., Lilien J., and Reichardt L. F. (1987) Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and-independent cell adhesion molecules. Proc. Natl. Acad. Sci. USA 84, 2555–2559.PubMedCrossRefGoogle Scholar
  14. 14.
    Bixby J. L., Lilien J., and Reichardt L. F. (1988) Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro. J. Cell Biol. 107, 353–361.PubMedCrossRefGoogle Scholar
  15. 15.
    Bock E., Richter-Landsberg C., Faissner A., and Schachner M. (1985) Demonstration of immunochemical identity between nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule LI. EMBO J. 4, 2765–2768.PubMedGoogle Scholar
  16. 16.
    Bornstein M. B. (1958) Reconstituted rat-tail collagen used as a substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab. Invest. 7, 134–137.PubMedGoogle Scholar
  17. 17.
    Bottenstein J. E. and Sato G. H. (1980) Fibronectin and polyslysine requirement for proliferation of neuroblastoma cells in defined medium. Exp. Cell Res. 129, 361–366.PubMedCrossRefGoogle Scholar
  18. 18.
    Bozyczko D. and Horwitz A. F. (1986) The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J. Neurosci. 6, 1241–1251.PubMedGoogle Scholar
  19. 19.
    Brockes J. P., Fields K. L., and Raff M. C. (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118.PubMedCrossRefGoogle Scholar
  20. 20.
    Buck C, Shea E., Duggan K., and Horwitz A. F. (1986) Integrin (the CSAT antigen): functionality requires oligomeric intergrity. J. Cell Biol. 103, 2421–2428.PubMedCrossRefGoogle Scholar
  21. 21.
    Campenot R. B. (1979) Independent control of the local environment of somas and neurites. Methods in Enzymol. 28, 302–307.CrossRefGoogle Scholar
  22. 22.
    Carbonetto S., Evans D., and Cochard P. (1987) Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems. J.Neurosd. 7, 610–620.Google Scholar
  23. 23.
    Caroni P. and Schwab M. E. (1988a) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Caroni P. and Schwab M. E. (1988b) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Biol. 106, 1281–1288.PubMedCrossRefGoogle Scholar
  25. 25.
    Caroni P. and Schwab M. E. (1989) Codistribution of neurite growth inhibitors and oligodendrocytes in rat CNS: appearance follows nerve fiber growth and precedes myelination. Dev. Biol. 136, 287–295.PubMedCrossRefGoogle Scholar
  26. 26.
    Chang S., Rathjen F. G., and Raper J. A. (1987) Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins. J. Cell Biol. 104, 355–362.PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen J., Burne J. F., McKinlay C., and Winter J. (1987) The role of laminin and the laminin/fibronectin receptor complex in the outgrowth of retinal ganglion cell axons. Dev. Biol. 122, 407–418.PubMedCrossRefGoogle Scholar
  28. 28.
    Cole G. J., Schubert D., and Glaser L. (1985) Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J. Cell Biol. 100, 1192–1199.PubMedCrossRefGoogle Scholar
  29. 29.
    Covault J., Cunningham J. M., and Sanes J. R. (1987) Neurite outgrowth on cryostat sections of innervated and denervated skeletal muscle. J. Cell Biol. 105, 2479–2488.PubMedCrossRefGoogle Scholar
  30. 30.
    Cox E. C., Muller B., and Bonhoeffer F. (1990) Axonal guidance in the chick visual system: posterior tectal membranes induce collapse of growth cones from the temporal retina. Neuron 2, 31–37.CrossRefGoogle Scholar
  31. 31.
    David S. and Aguayo A. J. (1981) Axonal elongation in peripheral nervous system “bridges“ after central nervous system injury in adult rats. Science 214, 931–933.PubMedCrossRefGoogle Scholar
  32. 32.
    Davies J. A., Cook G. M. W., Stern G, and Keynes R. J. (1990) Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones. Neuron 2, 11–20.CrossRefGoogle Scholar
  33. 33.
    Davis G. E., Manthorpe M., Engvall E., and Varon S. (1985) Isolation and characterization of rat Schwannoma neurite-promoting factor: evidence that the factor contains laminin. J. Neurosci. 5, 2662–2671.PubMedGoogle Scholar
  34. 34.
    Dow K. E., Mirski S. E. L., Roder J. C., and Riopelle R. J. (1988) Neuronal proteoglycans: biosynthesis and functional interaction with neurons in vitro. J. Neurosti. 8, 3278–3289.Google Scholar
  35. 35.
    Drazba J. and Lemmon V. (1990) The role of cell adhesion molecules in neurite outgrowth on Mueller cells. Dev. Biol. 138, 82–93.PubMedCrossRefGoogle Scholar
  36. 36.
    du Lac S., Bastiani M. J., and Goodman C. S. (1986). Guidance of neuronal growth cones in the grasshopper embryo. II. Recognition of a specific axonal pathway by the aCC neuron. J. Neurosci. 6, 3532–3541.PubMedGoogle Scholar
  37. 37.
    Edelman G. M. (1984) Modulation of cell adhesion during induction, histo-genesis, and perinatal development of the nervous system. Ann. Rev. Neurosci. 7, 339–377.PubMedCrossRefGoogle Scholar
  38. 38.
    Edelman G. M., Murray B. A., Mege R.-M., Cunningham B. A., and Gallin W. J. (1987) Cellular expression of liver and neural cell adhesion molecules after transfecting with their cDNAs results in specific cell-cell binding. Proc. Natl. Acad. Sci. USA 84, 8502–8506.PubMedCrossRefGoogle Scholar
  39. 39.
    Edgar D., Timpl R., and Thoenen H. (1984) The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO. 3, 1463–1468.Google Scholar
  40. 40.
    Edgar D., Timpl R., and Thoenen H. (1988) Structural requirements for the stimulation of neurite outgrowth by two variants of laminin and their inhibition by antibodies. J. Cell Biol. 106, 1299–1306.PubMedCrossRefGoogle Scholar
  41. 41.
    Elsdale T. and Bard J. (1972) Collagen substrata for studies on cell behavior. J. Cell Biol. 54, 626–637.PubMedCrossRefGoogle Scholar
  42. 42.
    Engvall E. T. and Ruoslahti E. (1977) Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 20, 1–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Engvall E. T., Krusius T., Wewer U., and Ruoslahti E. (1983) Laminin from rat yolk sac tumor: isolation, partial characterization, and comparison with mouse laminin. Arch. Biochem. Biophys. 222, 649–656.PubMedCrossRefGoogle Scholar
  44. 44.
    Fallon J. R. (1985a) Preferential outgrowth of central nervous system neurties on astrocytes and Schwann cells as compared with nonglial cells in vitro. J. Cell Biol. 100, 198–207.PubMedCrossRefGoogle Scholar
  45. 45.
    Fallon J. R. (1985b) Neurite guidance by non-neuronal cells in culture: preferential outgrowth of peripheral neurites on glial as compared to nonglial cell surfaces. J. Neurosci. 5, 3169–3177.PubMedGoogle Scholar
  46. 46.
    Fischer G., Kuenemund V., and Schachner M. (1986) Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J. Neurosci. 6, 605–612.PubMedGoogle Scholar
  47. 47.
    Friedlander D. R., Grumet M., and Edelman G. M. (1985) Nerve growth factor enhances expression of neuronglia cell adhesion molecule in PC12 cells. J. Cell Biol. 102, 413–419.CrossRefGoogle Scholar
  48. 48.
    Friedlander D. R., Hoffman S., and Edelman G. M. (1988) Functional mapping of cytotactin: proteolytic fragments active in cell-substrate adhesion. J. Cell Biol. 107, 2329–2340.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoffman S., Friedlander D. R., Chuong C., Grumet M., and Edelman G. M. (1986) Differential contributions of Ng-CAM and N-CAM to cell adhesion in different neural regions. J. Cell Biol. 103, 145–158.PubMedCrossRefGoogle Scholar
  50. 50.
    Hoffman S. and Edelman G. (1987) A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin. Proc. Natl. Acad. Sd. USA 84, 2523–2537.CrossRefGoogle Scholar
  51. 51.
    Horwitz A. F., Duggan K. Greggs R., Dekker C., and Buck C. (1985) The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J. Cell Biol. 101, 2134–2144.PubMedCrossRefGoogle Scholar
  52. 52.
    Humphries M. J., Akiyama S. K., Komoriya A., Olden K., and Yamada K. (1988) Neurite extension of chicken peripheral nervous system neurons on fibronectin: relative importance of specific adhesion sites in the central cell-binding domain and the alternatively spliced Type III segment. J. Cell Biol. 106, 1289–1297.PubMedCrossRefGoogle Scholar
  53. 53.
    Iversen P. L., Partlow L. M., Stensaas L. J., and Moatamed F. (1981) Characterization of a variety of standard collagen substrates: infrastructure, uniformity, and capacity to bind and promote growth of neurons. In Vitro 17, 540–552.PubMedCrossRefGoogle Scholar
  54. 54.
    Johnson M. I. and Argiro V. (1983) Techniques in the tissue culture of rat sympathetic neurons. Methods Enymol. 103, 334–347.CrossRefGoogle Scholar
  55. 55.
    Kalcheim C., Barde Y.-A., Thoenen H, and Le Douarin, N. M. (1987) In vivo effect of brain-derived neurotrophic factor on the survival of developing dorsal root ganglion cells. EMBO J. 6, 2871–2873.PubMedGoogle Scholar
  56. 56.
    Kapfhammer J. P. and Raper J. A. (1987) Collapse of growth cone structure on contact with specific neurites in culture. J. Neurosd. 7, 201–212.Google Scholar
  57. 57.
    Kapfhammer J. P., Grunewald B. E., and Raper J. A. (1986) The selective inhibition of growth cone extension by specific neurites in culture. J. Neurosd. 6, 2527–2534.Google Scholar
  58. 58.
    Keilhauer G., Faissner A., and Schachner M. (1985) Differential inhibition of neurone-neurone, neurone-astrocyte, and astrocyte-astrocyte adhesion by L1, L2, and N-CAM antibodies. Nature 316, 728–730.PubMedCrossRefGoogle Scholar
  59. 59.
    Klebe R. J., Bentley K. L, Sasser P. J., and Schoen R. C. (1980) Elution of fibronectin from collagen with chaotropic agents. Exp. Cell Res. 130, 111–117.PubMedCrossRefGoogle Scholar
  60. 60.
    Kleitman N., Wood P., Johnson M. I., and Bunge R. P. (1988) Schwann cell surfaces but not extracellular matrix organized by Schwann cells support neurite outgrowth from embryonic rat retina. J. Neurosd. 8, 653–663.Google Scholar
  61. 61.
    Kuenemund V., Jungalwala F. B., Fischer G., Chou D. K. H., Keilhauer G., and Schachner M. (1988) The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J. Cell Biol. 106, 213–223.CrossRefGoogle Scholar
  62. 62.
    Lagenaur C. and Lemmon V. (1987) A L1-like molecule, the 8D9 antigen is a potent substrate for neurite extension. Proc. Natl. Acad. Set USA 84, 7753–7757.CrossRefGoogle Scholar
  63. 63.
    Landmesser L., Dahm L., Schultz K., and Rutishauser U. (1988) Distinct roles of adhesion molecules during innervation of embryonic chick muscle. Dev. Biol. 130, 645–670.PubMedCrossRefGoogle Scholar
  64. 64.
    Lein P. J. and Higgins D. (1989) Laminin and a basement membrane extract have different effects on axonal and dendritic outgrowth from embryonic rat sympathetic neurons in vitro. Deo. Biol. 136, 330–345.CrossRefGoogle Scholar
  65. 65.
    Lemmon V., Farr K. L., and Lagenauer C. (1989) L1-mediated axon growth occurs via a homophilic binding mechanism. Neuron 2, 1597–1603.PubMedCrossRefGoogle Scholar
  66. 66.
    Letourneau P. C. (1975) Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Deo. Biol. 44, 77–91.CrossRefGoogle Scholar
  67. 67.
    Letourneau P. C., Shattuck T. A., Roche F. K., Takeichi M., and Lemmon V. (1990) Nerve growth cone migration onto Schwann cells involves the calcium-dependent adhesion molecule, N-cadherin. Deo. Biol. 138, 430–442.CrossRefGoogle Scholar
  68. 68.
    Lindner J., Rathjen F. G., and Schachner M. (1983) L1 mono-and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature (Lond.) 305, 427–430.CrossRefGoogle Scholar
  69. 69.
    Lindsay R. M., Thoenen H., and Barde Y.-A. (1985) Placode and neural crest-derived sensory neurons are responsive at early developmental stages to brain-derived neurotrophic factor. Deo. Biol. 112, 319–328.CrossRefGoogle Scholar
  70. 70.
    Mackie E. J., Tucker R. P., Halfter W., Chiquet-Ehrismann R., and Epperlein H. H. (1988) The distribution of tenascin coincides with pathways of neural crest cell migration. Development 102, 237–250.PubMedGoogle Scholar
  71. 71.
    Macklis J. D., Sidman R. L., and Shine H. D. (1985) Cross-linked collagen surface for cell culture that is stable, uniform, and optically superior to conventional surfaces. In vitro 21, 189–194.Google Scholar
  72. 72.
    Manthorpe M., Varon S., and Adler R. (1981) Neurite-promoting factor in conditioned medium from RN22 schwannoma cultures: bioassay, fractionation, and properties. J. Neurochem. 37, 759–767.PubMedCrossRefGoogle Scholar
  73. 73.
    Manthorpe M., Engvall E., Ruoslahti E., Longo F. M., Davis G. E., and Varon S. (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J. Cell Biol. 97, 1882–1890.PubMedCrossRefGoogle Scholar
  74. 74.
    Masurovsky E. B. and Bunge R. P. (1968) Fluoroplastic coverslips for long-term nerve tissue culture. Stain Technol. 43, 161–165.PubMedGoogle Scholar
  75. 75.
    Matsunaga M., Hatta K., and Takeichi M. (1988) Role of Nodherin cell adhesion molecules in histogenesis of neural retina. Neuron 1, 289–295.PubMedCrossRefGoogle Scholar
  76. 76.
    McCarthy K. D. and De Vellis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902.PubMedCrossRefGoogle Scholar
  77. 77.
    Moos M., Tacke R., Scherer H., Teplow D., Frueh K., and Schachner M. (1988) Neural adhesion molecule LI as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature (Lond.) 334, 701–703.CrossRefGoogle Scholar
  78. 78.
    Muir D., Engvall E., Varon S., and Manthorpe M. (1989) Schwannoma cell-derived inhibitor of the neurite-promoting activity of laminin. J. Cell Biol. 109, 2353–2362.PubMedCrossRefGoogle Scholar
  79. 79.
    Noble M., Fok-Seang J., and Cohen J. (1984) Glia are a unique substrate for the in vitro growth of central nervous system neurons. J. Neurosci. 4, 1892–1903.PubMedGoogle Scholar
  80. 80.
    Patterson P. (1988) On the importance of being inhibited, or saying no to growth cones. Neuron 1, 263–267.PubMedCrossRefGoogle Scholar
  81. 81.
    Raper J. A. and Kapfhammer J. P. (1990) The enrichment of a neuronal growth cone collapsing activity from embryonic chick brain. Neuron 2, 21–29.CrossRefGoogle Scholar
  82. 82.
    Raper J. A., Bastiani M. J., and Goodman C. S. (1983a) Pathfinding by neuronal growth cones in grasshopper embryos. I. Divergent choices made by growth cones of sibling neurons. J. Neurosci. 3, 20–30.PubMedGoogle Scholar
  83. 83.
    Raper J. A., Bastiani M. J., and Goodman C. S. (1983b) Pathfinding by neuronal growth cones in grasshopper embryos. II. Selective fasciculation onto specific axonal pathways. J. Neurosci. 3, 31–41.PubMedGoogle Scholar
  84. 84.
    Raper J. A., Bastiani M. J., and Goodman C. S. (1983c) Guidance of neuronal growth cones: selective fasciculation in the grasshopper embryo. Cold Spring Harbor Symp. Quant. Biol. 48, 587–598.PubMedCrossRefGoogle Scholar
  85. 85.
    Raper J. A., Bastiani M. J., and Goodman C. S. (1984) Pathfinding by neuronal growth cones in grasshopper embryos. IV. The effects of ablating the A and P axons upon the behavior of the G growth cone. J. Neurosci. 4, 2329–2345.PubMedGoogle Scholar
  86. 86.
    Rathjen F. G. and Rutishauser U. (1984) Comparison of two cell surface molecules involved in neural cell adhesion. EMBO J. 3, 461–465.PubMedGoogle Scholar
  87. 87.
    Rathjen F. G., Wolff J. M., Frank R., Bonhoeffer F., and Rutishauser U. (1987) Membrane glycoproteins involved in neurite fasciculation. J. Cell Biol. 104, 343–353.PubMedCrossRefGoogle Scholar
  88. 88.
    Ratner N., Bunge R. P., and Glaser L. (1985) A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J. Cell Biol. 101, 744–754.PubMedCrossRefGoogle Scholar
  89. 89.
    Rogers S. L., McCarthy J. B. Palm S. L., Furcht L. T., and Letourneau P. C. (1985) Neuron-specific interactions with two neurite promoting fragments of fibronectin. J. Neurosci. 5, 369–378.PubMedGoogle Scholar
  90. 90.
    Ruoslahti E., Hayman E., Pierschbacher M., and Engvall E. (1980) Fibronectin: purification, immunochemical properties and biological activities. Methods Enzymol. 82A, 803–331.Google Scholar
  91. 91.
    Rutishauser U. (1984) Developmental biology of a neural cell adhesion molecule. Nature (Lond.) 310, 549–554.CrossRefGoogle Scholar
  92. 92.
    Rutishauser U. and Jessell T. M. (1988) Cell adhesion molecules in vertebrate neural development. Physiol. Rev. 68, 819–857.PubMedGoogle Scholar
  93. 93.
    Rutishauser U., Gall W. E., and Edelman G. (1978) Adhesion among neural cells of the chick embryo FV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J. Cell Biol. 79, 382–393.PubMedCrossRefGoogle Scholar
  94. 94.
    Rutishauser U., Grumet M., and Edelman G. M. (1983) Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture. J. Cell Biol. 97, 145–152.PubMedCrossRefGoogle Scholar
  95. 95.
    Rutishauser U., Hoffman S., and Edelman G. M. (1982) Binding properties of a cell adhesion molecule from neural tissue. Proc. Natl. Acad. Sci. USA 79, 685–689.PubMedCrossRefGoogle Scholar
  96. 96.
    Sandrock A. W. and Matthew W. D. (1987) Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay. Proc. Natl. Acad. Sci. USA 84, 6934–6938.PubMedCrossRefGoogle Scholar
  97. 97.
    Schnell L. and Schwab M. E. (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-assocaited neurite growth inhibitors. Nature (Lond.) 343, 269–272.CrossRefGoogle Scholar
  98. 98.
    Seilheimer B. and Schachner M. (1987) Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor. EMBO J. 6, 1611–1616.PubMedGoogle Scholar
  99. 99.
    Seilheimer B. and Schachner M. (1988) Studies of adhesion molecules mediating interaction between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J. Cell Bid. 107, 341–351.CrossRefGoogle Scholar
  100. 100.
    Seilheimer B., Persohn E., and Schachner M. (1989) Antibodies to the LI adhesion molecule inhibit Schwann cell ensheathment of neurons in vitro. Cell Biol 109, 3095–3103.CrossRefGoogle Scholar
  101. 101.
    Sieber-Blum M., Sieber F., and Yamada K. M. (1981) Cellular fibronectin promotes adrenergic differentiation of quail neural crest cells in vitro. Exp. Cell Res. 133, 295–385.CrossRefGoogle Scholar
  102. 102.
    Silver J. and Rutishauser U. (1984) Guidance of optic axons in vivo by a preformed adhesive pathway on neuroepithelial endfeet. Dev. Biol. 106, 485–499.PubMedCrossRefGoogle Scholar
  103. 103.
    Smith D. E., Mosher D. F., Johnson R. B., and Furcht L. T. (1982) Immunological identification of two sulfhydryl-containing fragments of human plasma fibronectin. J. Biol. Chem. 257, 5831–5838.PubMedGoogle Scholar
  104. 104.
    Smith D. E. and Furcht L. T. (1982) Localization of two unique heparin binding domains of human plasma fibronectin with monoclonal antibodies. J. Biol. Chem. 257, 6518–6523.PubMedGoogle Scholar
  105. 105.
    Smith G. M., Miller R. H., and Silver J. (1986) Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation. J. Comp. Neurol. 251, 23–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Smith G. M., Rutishauser U., Silver J., and Miller R. H. (1990) Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Dev. Biol. 138, 377–390.PubMedCrossRefGoogle Scholar
  107. 107.
    Stallcup W. B. and Beasley L. (1985) Involvement of the nerve growth factor-inducible large external glycoprotein (NILE) in neurite fasciculation in primary cultures of rat brain. Proc. Natl. Acad. Sci. USA 82, 1276–1280.PubMedCrossRefGoogle Scholar
  108. 108.
    Takeichi M. (1988) The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102, 639–655.PubMedGoogle Scholar
  109. 109.
    Thanos S., Bonhoeffer F., and Rutishauser U. (1984) Fiber-fiber interactions and tectal cues influence the development of the chicken retinotectal projection. Proc. Natl. Acad. Sci. USA 81, 1906–1910.PubMedCrossRefGoogle Scholar
  110. 110.
    Timpl R., Martin G. R., Bruckner P., Wick G., and Wiedemann H. (1978) Nature of the collagenous protein in a tumor basement membrane. Eur. J. Biochem. 84, 43–52.PubMedCrossRefGoogle Scholar
  111. 111.
    Tomaselli K. J., Damsky C. H., and Reichardt L. F. (1987) Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: identification of integrin-related glycoproteins involved in attachment and process outgrowth. J. Cell Biol. 105, 2347–2358.PubMedCrossRefGoogle Scholar
  112. 112.
    Tomaselli K. J., Reichardt L. F., and Bixby J. L. (1986) Distinct molecular interactions mediate neuronal process outgrowth on nonneuronal cell surfaces and extracellular matrices. J. Cell Biol. 103, 2659–2672.PubMedCrossRefGoogle Scholar
  113. 113.
    Tomaselli K. J., Neugebauer K. M., Bixby J. L., Lilien J., and Reichardt L. F. (1988) N-Cadherin and integrins: two receptor systems mat mediate neuronal process outgrowth on astrocyte surfaces. Neuron 1, 33–43.PubMedCrossRefGoogle Scholar
  114. 114.
    Walter J., Kern-Veits B., Huf J., Stolze B., and Bonhoeffer F. (1987) Recognition of position-specific properites of tectal cell membranes by retinal axons in vitro. Development 101, 685–696.PubMedGoogle Scholar
  115. 115.
    Weiss L. (1970) The cell periphery. Int. Rev. Cytol. 26, 63–105.CrossRefGoogle Scholar
  116. 116.
    Wood P. M. (1976) Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 115, 361–375.PubMedCrossRefGoogle Scholar
  117. 117.
    Yamada K. M., Kennedy D. W., Kimata K., and Pratt R. M. (1980) Characterization of fibronectin interactions with glycosaminoglycans and identification of proteolytic fragments. J. Biol. Chem. 255, 6055–6063.PubMedGoogle Scholar
  118. 118.
    Yavin E. and Yavin Z. (1974) Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J. Cell Biol. 62, 540–546.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. Totowa, New Jersey 1992

Authors and Affiliations

  • Daren Ure
    • 1
  • Ann Acheson
    • 2
  1. 1.Department of Anatomy and Cell BiologyUniversity of AlbertaEdmontonCanada
  2. 2.Regeneron Pharmaceuticals Inc.Tarrytown

Personalised recommendations