Animal Models of the Wernicke-Korsakoff Syndrome

  • Maryse Héroux
  • Roger F. Butterworth
Part of the Neuromethods book series (NM, volume 22)


In humans, deficiency of thiamine (vitamin B,) is associated with two well-defined neurological disorders: a mixed sensorymotor neuropathy and the Wernicke-Korsakoff syndrome. Disturbances of thiamine metabolism may also play a role in other human diseases, such as infantile subacute necrotizing encephalomyelopathy (Leigh Disease), as well as in some forms of inherited ataxias. One of the characteristics of a number of these thiamine-deficiency disorders is the predilection to neuropathologic damage of specific regions of the central nervous system (CNS).


Inferior Colliculus Vestibular Nucleus Thiamine Deficiency Mammillary Body Medial Vestibular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aikawa H., Watanabe I. S., Furuse T., Iwasaki Y., Satoyoshi E., Sumi T., and Moroji T. (1984) Low energy levels in thiamine-deficient encephalopathy. J. Neuropathol. Exp. Neural. 43, 276–287.Google Scholar
  2. Alexander L., Pigoan M., and Myerson A. (1938) Beri-beri and scurvy. Trans. Am. Neural. Assoc. 64, 135–139.Google Scholar
  3. Barclay L. L., Gibson G. E., and Blass J. P. (1981a) The string test: An early behavioral change in thiamine deficiency. Pharmacol. Biochem. Behav. 14, 153–157.PubMedGoogle Scholar
  4. Barclay L. L., Gibson G. E., and Blass J. P. (1981b) Impairment of behavior and acetylcholine metabolism in thiamine deficiency. J. Pharmacol. Exp. Ther. 217, 537–543.PubMedGoogle Scholar
  5. Blank N. K., Vick N. A., and Schulman S. (1975) Wernicke’s encephalopathy: An experimental study in the rhesus monkey. Acta Nempathol. 31, 137–150.Google Scholar
  6. Brosemer R. W., Grammer J., and Gurusiddaiah S. (1981) The effect of oxythiamine, a thiamine antagonist, on glutamine levels in murine brain regions. Nutr. Rep. Int. 24, 425–430.Google Scholar
  7. Butterworth R. F. (1981) Regional amino acid neurotransmitter distribution in thiamine deficiency. Proc. 8th Meet. Int. Soc. Neurchem. Nottingham, U.K.Google Scholar
  8. Butterworth R. F. (1982) Neurotransmitter function in thiamine deficiency encephalopathy. Neurochem. Int. 4, 449–464.PubMedGoogle Scholar
  9. Butterworth R. F. (1986) Cerebral thiaminedependent enzyme changes in experimental Wernicke’s encephalopathy. Metab. Brain Dis. 1, 165–175.PubMedGoogle Scholar
  10. Butterworth R. F. (1989) Effects of thiamine deficiency on brain metabolism: Implications for the pathogenesis of the Wernicke-Korsakoff Syndrome. Alcohol Alcohol. 24, 271–279.PubMedGoogle Scholar
  11. Butterworth R. F., Giguère J. F., and Besnard A. M. (1985) Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 1. The pyruvate dehydrogenase complex. Neurochem. Res. 10, 1417–1428.PubMedGoogle Scholar
  12. Butterworth R. F., Giguere J. F., and Besnard A. M. (1986) Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. α-ketoglutarate dehydrogenase. Neurochem. Res. 11, 576–577.Google Scholar
  13. Butterworth R. F., Hamel E., Landreville F., and Barbeau A. (1978) Cerebellar ataxia produced by 3-acetyl pyridine in the rat. Can. J. Neural. Sci. 5, 131–133.Google Scholar
  14. Butterworth R. F., Hamel E., Landreville F., and Barbeau A. (1979) Amino acid changes in thiamine-deficient ecnephalopathy: Some implications for the pathogenesis of Friedreich’s Ataxia. Can. J. Neurol. Sci. 6, 217–222.PubMedGoogle Scholar
  15. Butterworth R. F. and Héroux M. (1989) Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiaminedependent enzymes. J. Neurochem. 52, 1079–1084.PubMedGoogle Scholar
  16. Collins G. (1967) Glial cell changes in the brainstem of thiamine deficient rats. Am. J. Pathol. 50, 791-802.Google Scholar
  17. Collins G. H., Converse W. K. (1970) Cerebellar degeneration in thiamine deficient rats. Am. J. Pathol. 58, 219–233.PubMedGoogle Scholar
  18. Collins R. G, Kirkpatrick J. B., and McDougall D. B. (1970) Some regional pathologic and metabolic consequences in mouse brain with pyrithiamine-induced thiamine deficiency. J. Neuropathol. Exp. Neurol. 29, 57–69.PubMedGoogle Scholar
  19. Cooper J. R. (1968) The role of thiamine in nervous tissue: The mechanism of action of pyrithiamine. Biochim. Biophys. Acta 156, 368–373.PubMedGoogle Scholar
  20. Cooper J. R., Roth R. H., and Kini M. M. (1963) Biochemical and physiological function of thianune in nervous tissue. Nature 199, 609,610.Google Scholar
  21. Cravioto H., Korein J., and Silberman J. (1961) Wernicke’s encephalopathy: A clinical and pathological study of 28 autopsied cases. Arch. Neurol. 4, 510–519.PubMedGoogle Scholar
  22. Csillik B. (1975) Synaptochemistry of acetylcholine metabolism in a cholinergic neuron. Int. Rev. Neurobiol. 18, 69–140.PubMedGoogle Scholar
  23. Desclin J. G (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 77, 365–384PubMedGoogle Scholar
  24. Dreyfus P. M. (1962) Clinical application of blood transketolase determinations. N. Engl. J. Med. 267, 596–598.PubMedGoogle Scholar
  25. Dreyfus P. M. (1982) Medical and neurological aspects of thiamine: An introduction, in, Thiamine: Twenty Years of Progress (Sable H. Z. and Gubler C. J., eds.), Ann. NY Acad. Sci. 378, 365,366.Google Scholar
  26. Dreyfus P. M. and Geel S. E. (1981) Vitamin and Nutritional Deficiencies, in, Basic Neurochemistry, Third Edition (Siegel G. J., Albers R. W., Agranoff B. W., and Katzman R., eds.), Little Brown, Boston, pp. 661–679.Google Scholar
  27. Dreyfus P. M. Hauser G. (1965) The effect of thiamine deficiency on the pyruvate decarboxylase system of the central nervous system. Biochim. Biohys. Acta 104, 78–84.Google Scholar
  28. Dreyfus P. M. and Victor M. (1961) Effects of thiamine deficiency on the central nervous system. Am. J. Clin. Nutr. 9, 414–425.PubMedGoogle Scholar
  29. Dunn T. B., Morris H. P., and Dubnick C. S. (1947) Lesions of chronic thiamine deficiency in mice. J. Natl. Cancer Inst. 8, 139–155.PubMedGoogle Scholar
  30. Evans C. A., Carlson W. E., and Green R. G. (1942) Pathology of Chastek paralysis in foxes; counterpart of Wernicke’s hemorrhagic poliencephalitis of man. Am. J. Pathol. 18, 79–91.PubMedGoogle Scholar
  31. Ferrari V. (1957) The metabolic changes in thiamine deficiency as reflected in the individual free amino acids in tissues. Acta Vitaminol. 11, 53–56.PubMedGoogle Scholar
  32. Freeman R. M. (1979) Rational use of vitamins in practice, in, Quick Reference to Clinical Nutrition A Guide for Physicians, (Halpern S. L., ed.), J. B. Lippincott Co., Toronto, pp. 115–122.Google Scholar
  33. Gaitonde M. K., Fayein N. A., and Johnson A. L. (1975). Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine. J Neurochein. 24, 1215–1223.Google Scholar
  34. Gaitonde M. R., Nixey R. W. K., and Sharman I. M. (1974) The effect of deficiency of thiamine on the metabolism of [U-14C] ribose and the levels of amino acids in rat brain. J. Neurochem. 22, 53–61.PubMedGoogle Scholar
  35. Gibson G., Carlson K., Nielson P., and Blass J. P. (1985) TPP-dependent enzymes in selective brain regions during thiamine deficiency. Trans. Am. Soc. Neurchem. 16, 401.Google Scholar
  36. Gibson G. E., Ksiezak-Reding H., Sheu K. F. R., Mykytyn V., and Blass J. P. (1984) Correlation of enzymatic, metabolic and behavioral deficits in thiamine deficiency and its reversal. Neurochem. Res. 9, 803–814.PubMedGoogle Scholar
  37. Giguere J. F. and Butterworth R. F. (1987) Activities of thiamine-dependent enzymes in two experimental models of thiamine deficiency encephalopathy: 3. Transketolase. Neurochem. Res. 1, 305–310.Google Scholar
  38. Glowinski J. and Iversen L. L. (1966) Regional studies of catecholamines in the rat brain. I: The disposition of (3H)-dopamine and (3H)dopa in various regions of the brain. J. Neurochem. 13, 655–659.PubMedGoogle Scholar
  39. Gubler C. J. (1976) Biochemical changes in thiamine deficiencies, in, Thiamine (Gubler C. J., Fujiwara M., and Dreyfus P. M., eds.), John Wiley and Sons, New York, pp. 121–141.Google Scholar
  40. Gubler C. J., Adams B. L., Hammond B., Yuan E. C., Guo S. M., and Bennion M. (1974) Effect of thiamine deprivation and thiamine antagonists on the level of γ-aminobutyric acid and on 2-oxoglutarate metabolism in rat brain. J. Neurochem. 22, 831–836.PubMedGoogle Scholar
  41. Gurtner H. P. (1961) Aneurin und nervenerregung versuche mit 35S-markierten aneurin und aneurinantimetabolisen. Helv. Physiol. Pharmacol. Acta Suppl. 11.Google Scholar
  42. Hakim A. M. (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann. Neurol. 16, 673–679.PubMedGoogle Scholar
  43. Haldm A. M., Carpenter S., and Pappius H. M. (1983) Metabolic and histological reversibility of thiamine deficiency. J. Cereb. Blood Flow Metab. 3, 468–477.Google Scholar
  44. Hakim A. M. and Pappius H. M. (1983) Sequence of metabolic, clinical and histological events in experimental thiamine deficiency. Ann. Neurol. 13, 365–375.PubMedGoogle Scholar
  45. Hamel E., Butterworth R. F., and Barbeau A. (1979) Effect of thiamine deficiency on levels of putative amino acid transmitters in affected regions of the rat brain. J. Neurochem. 33, 575–579.PubMedGoogle Scholar
  46. Harper C. (1983) The incidence of Wernicke’s encephalopathy in Australia —a neuropathological study of 131 cases. J. Neurol Neurosurg. Psychiatr. 46, 593–598.PubMedGoogle Scholar
  47. Heinrich C. P., Stadler H., and Weiser H. (1973). The effect of thiamine deficiency on the acetyl coenzyme A and acetylcholine levels in the rat brain. J. Neurochem., 21, 1273–1281.PubMedGoogle Scholar
  48. Héroux M. and Butterworth R. F. (1988) Reversible alterations of cerebral γ-aminobutyric acid in pyrithiamine-treated rats: Implications for the pathogenesis of Wernicke’s encephalopathy. J. Neurochem. 51, 1221–1226.PubMedGoogle Scholar
  49. Irle E. and Markowitsch H. J. (1982) Thiamine deficiency in the cat leads to severe learning deficits and to widespread neuroanatomical damage. Exp. Brain Res. 48,199–208PubMedGoogle Scholar
  50. Irle E. and Markowitsch H. J. (1983) Widespread neuroanatomical damage and learning deficits following chronic alcohol consumption or vitamin B (thiamine) deficiency in rats. Behav. Brain Res. 9, 277–294.PubMedGoogle Scholar
  51. Irwin S. (1968) Comprehensive observational assessment. Psychopharmacologia 13 222–257.PubMedGoogle Scholar
  52. Itokawa Y., Schultz R. A., and Cooper J. A. (1972) Thiamine in nerve membranes. Biochem. Biophys. Acta 226, 293–299.Google Scholar
  53. Itokawa Y. and Cooper J. R. (1970) Ion movements and thiamine. II. The release of the vitamin from membrane fragments. Biochem. Biophys. Acta 196, 274–284.PubMedGoogle Scholar
  54. Iwata H., Yabushita Y., Doi T., and Matsuda T. (1985) Synthesis of thiamine triphosphate in rat brain in vivo. Neurochem. Res. 10,779–787.PubMedGoogle Scholar
  55. Johnson L. R. and Gubler C. J. (1965) Studies with thiamine pyrophospho-kinase from rat brain. Fed Proc. 24, 481.Google Scholar
  56. Jolicoeur F. B., Rondeau D. B., Hamel E., Butterworth R. F., and Barbeau A. (1979) Measurement of ataxia and related neurological signs m the laboratory rat. Can. J. Neurol. Sci. 6, 209–216.PubMedGoogle Scholar
  57. Jubb K. V., Saunders L. Z., and Coates H. V. (1956) Thiamine deficiency encephalopathy in cats. J. Comp. Pathol. 66, 217–227.PubMedGoogle Scholar
  58. Kalm H., Luckner H., and Magun R. (1952) Klinik und pathologic der neurologischen stoerungen bei tierexperimeneller Bavitaminose. Dtsch. Z. fur Nervenheilkunde 167, 334–354.Google Scholar
  59. Kinnersley H. W. and Peters R. A. (1930) Brain localization of lactic acidosis in avitaminosis B1, and its relation to the origin of syptoms. Biochem. J. 24, 711–722.PubMedGoogle Scholar
  60. Krampitz L. O. and Wooley D. W. (1944) The manner of inactivation of thiamine by fish tissue. J. Biol. Chem. 152, 9–17.Google Scholar
  61. Langlais P. J., Mair R. G., and McEntee W. J. (1988). Acute thiamine deficiency in the rat: Brain lesions, amino acid changes and MK-801 pretreatment. Soc. Neurosc. Abstr. 14, 313.8.Google Scholar
  62. Lehninger A. L. (1982) Principles of Biochemistry. Worth Publishers, New York, pp.249–277, 531-560.Google Scholar
  63. McCandless D. W. (1985) Thiamine deficiency and cerebral energy metabolism, in Cerebral Energy Metabolism and Metabolic Encephalopathy, (McCandless D. W., ed.), Plenum, New York, pp. 335–351.Google Scholar
  64. McCandless D. W., Curley A. D., and Cassidy C. E. (1976) Thiamine deficiency and the pentose phosphate cycle in rats: Intracerebral mechanisms. J. Nutr. 106, 1144–1151.PubMedGoogle Scholar
  65. McCandless D. W. and Schenker S. (1968) Encephalopathy of thiamine deficiency: Studies of intracerebral mechanisms. J. Clin. Invest. 47, 2268–2280.PubMedGoogle Scholar
  66. Mair R. G., Anderson C. D., Langlais P. J., and McEntee W. J. (1988) Behavioral impairments, brain lesions and monoaminergic activity in the rat following recovery from a bout of thiamine deficiency. Behav. Brain Res. 27, 223–239.PubMedGoogle Scholar
  67. Massod M. F., McGuire S. L., and Werner K. R. (1971) Analysis of blood transketolase activity. Am. J. Clin. Pathol. 55, 465–470.PubMedGoogle Scholar
  68. Minz B. (1938) Sur la liberation de la vitamine B1 par le tronc isolé du nerf pneumogastrique soumis a l′excitation électrique. Compte rendus des Séances de biologic et de ses filiales (Paris) 127, 1251–1253.Google Scholar
  69. Murdock D. S. and Gubler C. J. (1973) Effects of thiamine deficiency and treatment with the antagonists oxythiamine and pyrithiamine on the levels and distribution of thiamine derivatives in rats. J. Nutr. Sci. Vitaminol. 19, 237–249.PubMedGoogle Scholar
  70. Nadi N. S., Kanter D., McBride W. J., and Aprison M. H. (1977) Effects of 3-acetyl pyridine on several putative neurotransmitter amino acids in the cerebellum and medulla of the rat. J. Neurochem. 28, 661,662.Google Scholar
  71. Nose Y., Iwashima A., and Nishino H. (1974) Thiamine uptake by rat brain slices, in: Thiamine (Gubler C. J., Fujiwara M., Dreyfus P. M., eds.), John Wiley and Sons, New York, pp. 157–168.Google Scholar
  72. Palkowitz M. and Owenstein N. J. (1988) Maps and guide to microdissection of the rut brain. Elsevier, New York.Google Scholar
  73. Parker W. D. Jr., Haas R., Stumpf D. A., Parks J., Eguren L. A., and Jackson C. (1984) Brain mitochondrial metabolism in experimental thiamine deficiency. Neurology 34, 1477–1481.PubMedGoogle Scholar
  74. Patrini G, Reggiani G, Laforenza U., and Rindi G. (1988) Blood-brain transport of thiamine monophosphate in the rat: A kinetic study in vivo. J. Neurochem. 50, 90–93.PubMedGoogle Scholar
  75. Perry T. L., MacLean J., Perry T. L. Jr., and Hansen S. (1976) Effects of 3-acetyl pyridine on putative neurotransmitter amino acids in rat cerebellum. Brain Res. 109, 432–635.Google Scholar
  76. Pincus J. H. and Grove J. (1970) Distribution of thiamine phosphate esters in normal and thiamine-deficient brain. Exp. Neurol. 28, 477–483.PubMedGoogle Scholar
  77. Pincus J. H. and Wells K. (1972) Regional distribution of thiamine-dependent enzymes in normal and thiamine-deficient brain. Exp. Neurol. 37, 495–501.PubMedGoogle Scholar
  78. Plaitakis A., Nicklas W. J., and Berl S. (1979) Alterations in uptake and metabolism of aspartate and glutamate in brain of thiamine deficient animals. Brain. Res. 17l, 489–502.Google Scholar
  79. Prickett 0. (1934) The effect of a deficiency of vitamin B upon the central and peripheral nervous system of the rat. Am. J. Physiol. 107, 459–470.Google Scholar
  80. Reggiani C., Patrini C., and Rindi G. (1984) Nervous tissue thiamine metabolism in vivo. I. Transport of thiamine and thiamine monophos-phate from plasma to different brain regions of the rat. Brain Res. 293, 319–327.PubMedGoogle Scholar
  81. Rindi G. (1982) Metabolism of thiamine and its phosphoric esters in different regions of the nervous system: A new approach. Acta Vitaminol. Enzymol. 4, 59–68.PubMedGoogle Scholar
  82. Rindi G., Comincioli V., Reggiani C., and Patrini C. (1984) Nervous tissue thiamine metabolism in vivo. II. Thiamine and its phosphoesters dynamics in different brain regions and sciatic nerve of the rat. Brain Res. 293, 329–342.PubMedGoogle Scholar
  83. Rindi G. and Perri V. (1961) Uptake of pyrithiamine by tissue of rats. Biochem. J. 80, 214–216.PubMedGoogle Scholar
  84. Rinehart J. F., Friedman M., and Greenberg L. D. (1949) Effect of experimental thiamine deficiency in the nervous system of the rhesus monkey. Arch. Pathol. 48, 129–139.Google Scholar
  85. Robertson D. M., Wasan S. M., and Skinner D. B. (1968) Ultrastructural changes of features of early brainstem lesions in thiamine deficient rats. Am. J. Pathol. 52, 1081–1087.PubMedGoogle Scholar
  86. Seltzer J. L. and McDougal D. B. Jr. (1974). Temporal changes of regional cocarboxylase levels in thiamine-depleted mouse brain. Am. J. Physiol. 227, 714–718.PubMedGoogle Scholar
  87. Siegel G., Agranoff B., Albers R. W., and Molinoff P. (1989) Basic Neurochemistry, Fourth Edition, Raven Press, New York, pp. 671–684, 733-763Google Scholar
  88. Simon P., Langwinski R., and Boissier J. R. (1969) Comparaison de différents tests d′évaluation de la catalepsie chez le rat. Thérupie 24, 985–995.Google Scholar
  89. Spector R. (1976) Thiamine transport in the central nervous system. Am. J. Physiol. 230, 1101–1107.PubMedGoogle Scholar
  90. Swank R. L. and Prados M. (1942) Avian thiamine deficiency. II. Pathologic changes in the brain and cranial nerves (especially the vestibular) and their relation to the clinical behavior. Arch. Neurol. Psychiatr. 47, 97–131.Google Scholar
  91. Tanaka C. and Cooper J. R. (1968) The fluorescent microscopic localization of thiamine in nervous tissue. J. Histochem. Cytochem. 16, 362–365.PubMedGoogle Scholar
  92. Tellez I. and Terry R. D. (1968) Fine structure of the early changes in the vestibular nuclei of the thiamine deficient rat. Am. J. Pathol. 52, 777–794.PubMedGoogle Scholar
  93. Torvik A., Lindboe C. F., and Rogde S. (1982) Brain lesions in alcoholics: A neuropathological study with clinical correlations. J. Neurol. Sci. 56, 233–248.PubMedGoogle Scholar
  94. Troncoso J. C., Johnston N. V., Hess K. M., Griffin J. W., and Price D. L. (1981) Model of Wernicke’s encephalopathy. Arch. Neurol. 38, 350–354.PubMedGoogle Scholar
  95. Victor M., Adams R. D., and Collins G. H. (1989) The Wernicke-Korsakoff syndrome and related neurological disorders due to alcoholism and malnutrition, Second Edition. Contemporary Neurology (Plum F. and McDowell F. A., eds.), Davis Company, Philadelphia, pp. 141–171.Google Scholar
  96. Victor M. and Laureno R. (1978) Neurologic complications of alcohol abuse: Epidemiologic aspects, in Advances in Neurology, Neuroepidemiology (Schoenberg B. S., ed.), Raven Press, New York, 19, 603–617.Google Scholar
  97. Von Muralt A. (1958) The role of thiamine (vitamin B1) in nervous excitation. Exp. Cell Res. Suppl. 5, 72–79.Google Scholar
  98. Waldenlind L., Borg S., and Vikander B. (1981) Effect of peroral thiamine treatment on thiamine contents and transketolase activity of red blood cells in alcoholic patients. Acta Med. Scand. 209, 209–212.PubMedGoogle Scholar
  99. Watanabe I. (1978) Pyrithiamine-induced acute thiamine-deficient encephalopathy in the mouse. Exp. Mol. Pathol. 28, 381–394.PubMedGoogle Scholar
  100. Watanabe I. and Kanabe S. (1978) Early edematous lesion of pyrithiamine induced acute thiamine deficient encephalopathy in the mouse. J. Neuropathol. Exp. Neurol. 37 401–413.PubMedGoogle Scholar
  101. Watanabe I., Iwasaki Y., Aikawa H., Satayashi E., and Davis J. W. (1981a) Hemorrhage of thiamine-deficient encephalopathy.J. Neuropathol. Exp. Neurol. 40, 566–580.PubMedGoogle Scholar
  102. Watanabe I., Tomito T., Hung K.-G., and Iwasaki Y. (1981b) Edematous necrosis in thiamine-deficient encephalopathy of the mouse. J. Neuropathol. Exp. Neurol. 40, 454–471.PubMedGoogle Scholar
  103. Witt E. D. (1985) Neuroanatomical consequences of thiamine deficiency: A comparative analysis. Alcohol and Alcohol. 2, 201–221.Google Scholar
  104. Witt E. D. and Goldman-Rakic P. S. (1983a) Intermittent thiamine deficiency in the rhesus monkey. I. Progression of neurological signs and neuroanatomical lesions. Ann. Neurol. 13, 376–395.PubMedGoogle Scholar
  105. Witt E. D. and Goldman-Rakic P. S. (1983b) Intermittent thiamine deficiency in the rhesus monkey. II. Evidence for memory loss. Ann. Neurol. 13, 396–401.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc 1992

Authors and Affiliations

  • Maryse Héroux
    • 1
  • Roger F. Butterworth
    • 1
  1. 1.Laboratory of NeurochemistryUniversity of MontrealMontrealCanada

Personalised recommendations