Skip to main content

Animal Models of the Cerebellar Ataxias

  • Protocol

Part of the book series: Neuromethods ((NM,volume 21))

Abstract

The cerebellum is composed of the cerebellar cortex, internal white matter, and deep cerebellar nuclei. These nuclei are the fastigial, interpositus, and dentate nuclei; they mediate most of the output of the cerebellum. This output is directed primarily to motor regions of the brain stem and cerebral cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Aggerbeck L. P., McMahon J. P., and Scanu A. M. (1974) Hypobeta-lipoproteinemia: clinical and biochemical description of a new kindred with “Friedreich’s Ataxia.” Neurology 24, 1051–1063.

    Article  PubMed  CAS  Google Scholar 

  • Altman J. (1975) Experimental reorganization of the cerebellar cortex. V. Effects of early X-irradiation schedules that allow or prevent the acquisition of basket cells. J. Corn. Neural. 165,31–48.

    Article  Google Scholar 

  • Blass J. P., Avignan J., and Uhlendorf B. W. (1970) A defect in pyruvate decarboxylase in a child with an intermittent movement disorder. J. Clin. Invest. 49, 423–432.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth R. F. (1985) Pyruvate dehydrogenase deficiency disorders, in Cerebral Energy Metabolism and Metabolic Encephalopathy (D. W. McCandless, ed.), Plenum, New York, pp. 121–141.

    Chapter  Google Scholar 

  • Butterworth R. F. and Giguée J. F. (1984) Amino acids in autopsied human spinal cord: selective changes in Friedreich’s Ataxia. Neurochem. Pathol. 2,7–17.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth R F., Hamel E., Landreville F., and Barbeau A. (1978) Cerebellar ataxia produced by 3-acetylpyridine in rat. Can. J. Neural. Sci. 5, 131–133.

    CAS  Google Scholar 

  • Caddy K. W. T. and Biscoe T. J. (1976) The number of Purkinje cells and olive neurones in the normal and Lurcher mutant mouse. Brain Res. 111, 396–398.

    Article  PubMed  CAS  Google Scholar 

  • Caddy K. W. T. and Sidman R. L. (1981) Purkinje cells and granule cells in the cerebellum of the Stumbler mutant mouse. Dev. Brain Res. 1, 221–236.

    Article  Google Scholar 

  • Desclin J. C. and Escubi J. (1974) Effects of 3-acetylpyridine on the central nervous system of the rat as demonstrated by silver methods. Brain Res. 77,349–364.

    Article  PubMed  CAS  Google Scholar 

  • DiDonato S., Rimoldi M., Moise A., Bertagnoglio B., and Uziel G. (1979) Fatal ataxic encephalopathy and camitine acetyltransferase deficiency: a functional defect of pyruvate oxidation? Neurology 29,1578–1583.

    Article  PubMed  CAS  Google Scholar 

  • Flint R. S., Rea M. A., and McBride W. J. (1981) In vitro release of endogenous amino acids from granule cell-, stellate cell-and climbing fibre-deficient cerebella. J. Neurochem. 37, 1425–1430.

    Article  PubMed  CAS  Google Scholar 

  • Goffinet A. M., So K. F., Yamamoto M., Edwards M., and Caviness V. S. (1984) Architectonic and hodological organization of the cerebellum in reeler mutant mice. Dev. Brain Res. 16,263–276.

    Article  Google Scholar 

  • Guidotti A., Biggio G., and Costa E. (1975). 3-acetylpyridine: a tool to inhibit the tremor and the increase of cGMP content in cerebellar cortex elicited by harmaline. Brain Res. 96,201–205.

    Article  PubMed  CAS  Google Scholar 

  • Gunn C. K. (1938) Hereditary acholuric jaundice in a new mutant strain of rats. J. Hered. 29,137–139.

    Google Scholar 

  • Herndon R. M. and Coyle J. T. (1977) Selective destruction of neurons by a transmitter agonist. Science 198,71,72.

    Article  PubMed  CAS  Google Scholar 

  • Herndon R. N., Margolis G., and Kilham L. (1971) The synaptic organization of the malformed cerebellum induced by perinatal infection with feline pauleukopenia virus (PLV). I. Elements forming the cerebellar glomeruli. J. Natropathol. Exp. Narrol. 30,196–205.

    Article  CAS  Google Scholar 

  • Hirano A. and Dembitzer H. M. (1975) The fine structure of staggerer cerebellum. J. Neuroputhol. Exp. Neural. 34,1–11.

    Article  CAS  Google Scholar 

  • Huxtable R., Azari J., Reisine T., Johnson P., Yamamura H., and Barbeau A. (1979). Regional distribution of amino acids in Friedreich’s Ataxia brains. Can. J. Neurol. Sci. 6,255–258.

    PubMed  CAS  Google Scholar 

  • Johnston M. and Coyle J. (1979) Histological and neurochemical effects of fetal treatment with methylazoxymethanol on rat neocortex in adulthood. Brain Res. 170,135–155.

    Article  PubMed  CAS  Google Scholar 

  • Jolicoeur F. B., Rondeau D. B., Hamel E., Butterworth R. F., and Barbeau A. (1979) Measurement of ataxia and related neurological signs in the laboratory rat. Can. J. Neurel. Sci. 6, 209–215.

    CAS  Google Scholar 

  • Kilham L. and Margolis G. (1966) Viral etiology of spontaneous ataxia of cats. Am. J. Pathol. 48, 991–1011.

    PubMed  CAS  Google Scholar 

  • Lalonde R. and Botez M. I. (1985) Exploration and habituation in nervous mutant mice. Behav. Brain Res. 17,83–86.

    Article  PubMed  CAS  Google Scholar 

  • McGeer P. L., Eccles J. G., and McGeer E. G. (1978) Molecular Neurobiology of the Mammadian Brain. Plenum, New York, pp. 202–206.

    Book  Google Scholar 

  • Mikoshiba K., Kohsaka S., Takamatsu K., and Tsukada Y. (1980) Cerebellar hypoplasia in the Gunn rat with hereditary hyperbilirubinemia: immunohistochemical and neurochemical studies. J. Neurochem. 35, 1309–1318.

    Article  PubMed  CAS  Google Scholar 

  • Muramoto O., Kanazawa I., and Ando K. (1981) Neurotransmitter abnormality in rolling mouse Nagoya, an ataxic mutant mouse. Brain Res. 215, 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Perry T. L., Kish S. J., Hansen S., and Currier R. D. (1981) Neurotransmitter amino acids in dominantly inherited cerebellar disorders. Neurology 31, 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A., Nicklas W. J., and Desnick R. J. (1980) Glutamate dehydroge-nase deficiency in three patients with Spinocerebellar Syndrome. Ann. Neurol. 7, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Rea M. A., McBride W. J., and Rohde B. H. (1980) Regional and synaptoso-mal levels of amino acid neurotransmitters in the 3-acetyl pyridine deafferented rat cerebellum. J. Neurochem. 34,1106–1108.

    Article  PubMed  CAS  Google Scholar 

  • Richterich R., Van Mechelen P., and Rossi E. (1965) Refsum’s Disease (heredopathia atactica polyneuritiformis): An inborn error of lipid metabolism with storage of 3,7,11,15-tetra-methylhexadecanoic acid. I. Report of a case. Am. J. Med. 39, 230–236.

    Article  PubMed  CAS  Google Scholar 

  • Robinson N. (1968) Chemical changes in the spinal cord in Friedreich’s Ataxia and motor neurone disease. J. Neurol. Neurosurg. Psychiatr. 31,330–333.

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S. and Sidman R. L. (1978) Concentrations of glutamic acid in cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and nervous mutants. Brain Res. 142, 269–283.

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S., Beart P. M., O’Gorman S., and Sidman R. L. (1979) Neurological and morphological consequences of axon terminal degeneration in cerebellar deep nuclei of mice with inherited Purkinje cell degeneration. Brain Res. 168, 75–95.

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S. and Turey M. (1982) The content of amino acids in the developing cerebellar cortex and deep cerebellar nuclei of granule cell-deficient mutant mice. Brain Res. 247, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Rohde B. H., Rea M. A., Simon J. R., and McBride W. J. (1979) Effects of X-irradiation induced loss of cerebellar granule cells on the synaptosomal levels and the high affinity uptake of amino acids. J. Neurochem. 32,143l–1435.

    Article  Google Scholar 

  • Rotter A. and Frostholm A. (1986) Cerebellar benzodiazepine receptor distribution: an autoradiographic study of the normal C57BL/6J and Purkinje cell degeneration mutant mouse. Neurosci. Lett. 1,66–71.

    Article  Google Scholar 

  • Schoenberg B. S. (1979) Epidemiology of the inherited ataxias, in Advances in Neurology, vol. 21 (R. A. P. Kark, R. N. Rosenberg, and L. J. Schut, eds.), Raven, New York, pp. 15–32.

    Google Scholar 

  • Sidman R. L. (1968) Development of interneuronal corrections in brain of mutant mice, in Physiological and Biochemical Aspects Of Nervous lntegration (F. D. Carlson, ed.), Prentice Hall, Engelwood Cliffs, New Jersey, p, 163.

    Google Scholar 

  • Sidman R. L., Green M. C., and Appel S. H. (1965) Catalog of the Neurological Mutants of the Mouse, Harvard University Press, Cambridge, UK, pp. 66,67.

    Google Scholar 

  • Sidman R. L., Lane P. W., and Dickie M. M. (1962) Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137,610–612.

    Article  PubMed  CAS  Google Scholar 

  • Slevin J. T., Johnston M. V., Biziere K., and Coyle J. T. (1982) Methyl-azoxymethanol acetate ablation of mouse cerebellar granule cells: effects on synaptic neurochemistry. Dev. Neurosci. 5, 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C. and Changeux J. P. (1974) Transsynaptic degeneration “en cascade” in the cerebellar cortex of staggerer mutant mice. Brain Res. 67, 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Stumpf D. A., Parks J. K., Eguren L. A., et al. (1982) Friedreich Ataxia: III Mitochondrial malic enzyme deficiency. Neurology 32,221–227.

    Article  PubMed  CAS  Google Scholar 

  • Stumpf D. A., Parks J. K., and Parker W. D. (1983). Friedreich’s Disease: IV. Reduced mitochondrial malic enzyme activity in heterozygotes. Neurology 33,780–783.

    Article  PubMed  CAS  Google Scholar 

  • Tran V. T. and Snyder S. H. (1979) Amino acid neurotransmitter candidates in rat cerebellum: selective effects of kainic acid lesions. Brain Res. 167, 345–353.

    Article  Google Scholar 

  • Weiner L. P., Herndon R. M., and Johnson R. T. (1978) Animal models of viral-induced ataxia: Implications for human disease, in Advances in Neurology, vol. 21, (R. A. P. Kark, R. N. Rosenberg, and L. J. Schut, eds.), Raven, New York, pp. 373–379.

    Google Scholar 

  • Wiklund L., Toggenburger G., and Cuenod M. (1982). Aspartate: possible neurotransmitter in cerebellar climbing fibres. Science 216 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Woodhams P., Rodd R., and Balazs R. (1978) Age-dependent susceptibility of inferior olive neurones to 3-acetylpyridine in the rat. Brain Res. 158, 194–198.

    Article  Google Scholar 

  • Young A. B., Oster-Granite M. L., Hemdon R. M., and Snyder S. H. (1974) Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum. Brain Res. 73,1–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press Inc.

About this protocol

Cite this protocol

Butterworth, R.F. (1992). Animal Models of the Cerebellar Ataxias. In: Boulton, A.A., Baker, G.B., Butterworth, R.F. (eds) Animal Models of Neurological Disease, I. Neuromethods, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-208-6:275

Download citation

  • DOI: https://doi.org/10.1385/0-89603-208-6:275

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-208-8

  • Online ISBN: 978-1-59259-626-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics