Abstract
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) was first shown to stimulate mobilization of intracellular Ca2+ from permeabilized pancreatic acinar cells (Streb et al., 1983) and has since become recognized as an intracellular messenger formed after receptor activation and then responsible for mobilizing Ca2+ from the intracellular stores of many different cell types. The interactions between most receptors and the phosphoinositidase C (PIC) that catalyzes formation of Ins(1,4,5)P 3 and 1,2-diacylglycerol (DG) have much in common with the more completely understood interactions between receptors and adenylyl cyclase (Gilman, 1987; Taylor, 1990b; Fig. 1). In both cases, agonist-occupied receptors catalyze activation of a specific guanine nucleotide dependent regulatory protein(s) (G protein) by allowing it to lose its tightly bound GDP and replace it with GTP. The active GTP-bound G protein, which has yet to be identified for the phosphoinositide pathway, then regulates the activity of an intracellular effector, for example, adenylyl cyclase or PIC. Stimulation of the latter causes increased hydrolysis of the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdInsP 2), and the formation of Ins(1,4,5)P 3 and DG.

Receptor-regulated formation of Ins(1,4,5)P 3 The complex of receptor (R) and agonist (A) catalyzes the exchange of GDP for GTP on an unidentified G protein. Binding of GTP to the α subunit of the oligomeric G protein probably promotes its dissociation into α-GTP and βγ subunits. The former probably directly stimulates PIC activity until its intrinsic GTPase activity hydrolyzes the bound GTP, inactivating it and allowing it to reassociate with the βγ complex to form the complete G protein. Active PIC catalyzes hydrolysis of PtdInsP2to Ins(1,4,5)P 3 and diacyglycerol. The latter can activate certain proteins kinase C before its metabolism by a specific kinase to phosphatidic acid or by specific lipases that remove the fatty acid residues. Ins(1,4,5)P 3 enters the cytosol and regulates Ca2+ mobilization from intracellular stores before it is metabolized by a specific 5-phosphatase or 3-kinase. The Ins(l,4)P 2 and Ins(1,3,4,5)P 4 formed are the first substrates of a complex series of phosphorylation and dephosphorylation reactions (not shown) that can eventually lead to inositol that can be recycled to the membrane phosphoinositides.
Keywords
- Sarcoplasmic Reticulum
- Ryanodine Receptor
- Intracellular Store
- Inositol Phosphate
- Pancreatic Acinar Cell
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ahnert-Hilger G. and Gratzl M. (1988) Controlled manipulation of the cell interior by pore-forming proteins. Trends Pharmacol. Sci. 9, 195–197.
Adunyah S. E. and Dean W. L. (1986) Effects of sulfhydryl reagents and other inhibitors on Ca2+ transport and inositol trisphosphate-induced Ca2+ release from human platelet membranes. J. Biol. Chem. 261, 13,071–13,075.
Ammann D. (1986) Ion-Selective Electrodes Principles Design and Application, Springer-Verlag, Heidelberg.
Atkinson T., Hammond P. M, Hartwell R. D., Hughes P., Scawen M. D., Sherwood R. F., Smau D. A. P., Bruton C. J., Harvey M. J., and Lowe C. R. (1981) Triazine dye affinity chromatography. Biochem. Soc. Trans. 9, 290–293.
Berridge M. J. (1988) Inositol trisphosphate-induced membrane potential osciuations in Xenopus oocytes. J Physiol. 403, 589–599.
Berridge M. J. (1989) Inositol trisphosphate-induced calcium mobilization is localized in Xenopus oocytes. Proc. R. Soc. Land. Biol. 238, 235–243.
Berridge M. J. and Galione A. (1988) CytosoIic calcium oscillators. FASEB J. 2, 3074–3082.
Berridge M. J. and Irvine R. P. (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.
Berridge M. J. and Irvine R. P. (1989) Inositol phosphates and cell signalling. Nature 341, 197–205.
Berridge M. J. and Michell R. H. (1988) Inositol Lipids and Transmembrane Signalling (The Royal Society, London), p. 200.
Berridge M. J., Cobbold P. H., and Cuthbertson K. S. R. (1988) Spatial and temporal aspects of cell signalling. Philos. Trans. R. Soc. Lond. Biol. 320, 325–343.
Bootman M. D., Pay G. F, Rick C. E., and Tones M. A. (1990) Two sulphonated dye compounds which compete for inositol 1,4,5-trisphosphate binding to rat liver microsomes: effects on S’phosphatase activity. Biochem. Biophys. Res. Commun. 166, 1334–1339.
Boyan B. D. and Clement-Cormier Y. (1984) Organic solvent extraction of membrane proteins, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C., eds.), Liss, NY, pp. 47–64.
Burgess G. M, Irvine R. F., Berridge M. J., McKinney J. S., and Putney J. W. (1984) Actions of inositol phosphates on Ca2+ pools in guinea-pig hepa-tocytes. Biochem. J. 224, 741–746.
Burgess G. M., McKinney J. S., Pabiato A., Leslie B. A., and Putney J. W. (1983) Calcium pools in saponin-permeabilized guinea-pig hepatocytes. J. Biol. Chem. 258, 15,336–15,345.
Burgoyne R. D, Cheek T. R, Morgan A., O’Sullivan A. J., Moreton R. B., Berridge M.J., Mata A. M., Colyer J., Lee A. G., and East J. M. (1989) Distribution of two distinct Car2+-ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaffin cells. Nature 342, 72–74.
Campbell A. K. (1983) Intracellular Calcium. Its Universal Role as Regulator. (John Wiley, Colchester).
Caswell A. H. (1979) Methods of measuring intracellular calcium. Int. Rev. Cytol. 56, 145–165.
Chadwick C. C., Saito A., and Fleischer S. (1990) Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc. Natl. Acad. Sci. USA 87, 2132–2136.
Challis R. A. J., Chilvers E. R., Willcocks A. L., and Nahorski S. R. (1990) Heterogeneity of [3H]inositol 1,4,5-trisphosphate binding sites in adrenal cortical membranes. Characterization and validation of a radioreceptor assay. Biochem. J. 265, 421–427.
Champeil P., Combettes L., Berthon B., Doucet E., Orlowski S., and Claret M. (1989) Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J. Biol. Chem. 264, 17,665–17,673.
Cheek T. R. (1989) Spatial aspects of calcium signalling. J. Cell Sci. 93, 211–216.
Cheuh S,-H. and Gill D. L. (1986) Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanism. J. Biol. Chem. 261, 13,883–13,886.
Chilvers E. R., Challiss R. A. J., Willcocks A. L., Potter B. V. L., Barnes P. J., and Nahorski S. R. (1990) Characterization of stereospecific binding sites for inositol 1,4,5-trisphosphate in airway smooth muscle. Br. J. Pharmacol. 99, 297–302.
Cobbold P. H. and Rink T. J. (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem. J. 248, 313–328.
Cobbold P., Dixon J., Sanchez-Bueno A., Woods N., Daly M., and Cuthbertson K. (1990) Receptor control of calcium transients, in Trans-membrane Signalling. Intracellular Messengers and Implications for Drug Development (Nahorski S. R., ed.), John Wiley, Chichester, UK, pp. 185–206.
Cockcroft S. and Gomperts B. D. (1979) ATP induces nucleotide permeability in rat mast cells. Nature 279, 541,542.
Cotton P. A., Day V. W. Hazen E. E, and Larsen S. (1973) Structure of methyl-guanidium dihydrogenorthophosphate. A model compound for argi-nine-phosphate hydrogen bonding. J, Am. Chem. Soc. 95, 4834–4840.
Danoff S. K., Supattapone S., and Snyder S. H. (1988) Characterization of membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem. J. 254, 701–705.
Dawson A. P. (1985) GTP enhances inositol trisphosphate-stimulated Ca2+ release from liver microsomes. FEBS Lett. 185, 147–150
Dawson A. P. and Irvine R. P. (1984) Inositol(l,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biohem. Biophys. Res. Commun. 120, 858–864
Downes C. P. and Michell R. H. (1985) Inositol phospholipid breakdown as a receptor-controlled generator of second messengers, in Molecular Mechanisms of Transmembrane Signalling (Cohen P. and Houslay M. D., eds.), Elsevier Science, Amsterdam, pp. 3–56.
Downes C. P., Berrie C. P., Hawkins P. T, Stephens L., Boyer J. L., and Harden T. K. (1988) Receptor and G-protein-dependent regulation of turkey erythrocyte phosphoinositidase C. Philos. Trans. R. Soc. Land. Biol. 320, 267–280.
Ehrlich B. E. and Watras J. (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336, 583–586
El-Rafei M. F. (1984) Assay of soluble receptors, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C., eds.), Alan R. Liss, NY, pp. 99–108.
Ferris C. D., Huganir R. L., Supattapone S., and Snyder S. H. (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342, 87–89.
Föhr K. J., Scott J., Ahnert-Hilger G., and Gratzl M. (1989) Characterization of the inositol 1,4,5-trisphosphate-induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p-hydroxymercuribenzoate. Biochem. J. 262, 83–89.
Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N, and Mikoshiba K. (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342, 32–38.
Gill D. L. (1989) Receptor kinships revealed. Nature 342, 16–18.
Gilman A. G. (1987) G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.
Glauert A. M, Dingle J. T., and Lucy J. A. (1962) Action of saponin on biological cell membranes, Nature 196, 952–955.
Gogelein H. and Huby A. (1984) Interactions of saponin and digitonin with black lipid membranes and lipid monolayers. Biochim. Biophys. Acta 773, 32–38.
Goldbeter A., DuPont G., and Berridge M. J. (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA 87, 1461–1465.
Guillemette G. and Segui J. A. (1988) Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-triphosphate in the bovine adrenal cortex. Mol. Endocrinol. 2, 1249–1255
Guillemette G, Balla T., Baukal A. J. and Catt K. J. (1988) Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in hepatic plasma membrane fractions. J. Biol. Chem. 263, 4541–4548.
Guillemette G., Favreau I., Lamontagne S., and Boulay G. (1990) 2,3-diphos-phoglycerate is a nonselective inhibitor of inositol 1,4,5 trisphosphate action and metabolism. Eur. J. Pharmacol. 188, 251–260.
Henne V., Mayr G. W, Grabowski B., Koppitz B., and Söling H.-D. (1988) Semisynthetic derivatives of inositol 1,4,5-trisphosphate substituted at the 1-phosphate group. Eur. J. Biochem. 174, 95–101.
Hirata M., Watanabe Y., Ishimatsu T., Yanaga P., Koga T., and Ozaki S. (1990) Inositol 1,4,5-trisisphosphate affinity chromatography. Biochem. Biophys. Res. Commun. 168, 379–386.
Hirata M., Watanabe Y., Ishimatsu T., Ikebe T., Kimura Y., Yamaguchi K., Ozaki S., and Koga T. (1989) Synthetic inositol trisphosphate analogs and their effects on phosphatase, kinase, and the release of Ca2+]. J. Biol. Chem. 264, 20,303–20,308.
Hjelmeland L. M. and Chrambrach A. (1984) Solubilization of functional membrane bound receptors, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C, eds.), Alan R. Liss, NY, pp. 35–46.
Hodgson M. E. and Shears S. B. (1990) Rat liver contains a potent endogenous inhibitor of inositol 1,3,4,5-tetrakisphosphate 3-phosphatase. Biochem. J. 267, 831–834.
Horne W. A., Weiland G. A., Oswald R. E., and Cerione R. A. (1986) Rapid incorporation of the solubilized dihydropyridine receptor into phos-pholipid vesicles. Biochim. Biophys. Acta 863, 205–212.
Horstman D. A., Takemura H., and Putney J. W. (1988) Formation and metabolism of [3H]inositol phosphates in AR42J pancreatoma cells. J. Biol. Chem. 263, 15,297–l5,303.
Hughes A. R, Takemura H., and Putney J. W. (1988) Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. J. Biol. Chem. 263, 10,314–10,319.
Irvine R. F. (1989) Functions of inositol phosphates, in Inositol Lipids in Cell Signalling (Michell R. H., Drummond A. H., and Downes C. P., eds.), Academic, London, pp. 135–161.
Irvine R. F. (1990) “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett. 263, 5–9.
Irvine R. F. and Moor R. M. (1986) Micro-injection of inositol 1,3,4,5-tetra-kisphosphate activates sea urchin eggs by a mechanism dependent on extrernal Ca2+. Biochem. J. 240, 917–920.
Jacob R. (1990) Calcium oscillations in electrically nonexcitable cells. Biochim. Biophys. Acta 1052, 427–438.
Jacob R., Merritt J. E, Hallam T. J., and Rink T. J. (1988) Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 335, 40–45.
Jean T. and Klee C. B. (1986) Calcium modulation of inositol 1,4,5-trisphos-phate-induced calcium release from neuroblastoma x glioma hybrid (NGlOS-15) microsomes. J Biol. Chem. 261, 16,414–16,420.
Joseph S. K. and Williamson J. R. (1986) Characteristics of inositol trisphos-phate-mediated Ca2+ release from permeabilized hepatocytes. J. Biol. Chem. 261, 14,658–14,664.
Joseph S. K. and Williamson J. R. (1989) Inositol polyphosphates and intra-cellular calcium release. Arch. Biochem. Biophys. 273, 1–15.
Joseph S. K., Rice H. L, and Williamson J. R. (1989) The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem. J 258, 261–265.
Joseph S. K, Thomas A. P., Williams R. J., Irvine R. F., and Williamson J. R. (1984) myo-Inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J. Biol. Chem. 259, 3077–3081.
Kass G. E. N, Duddy S. K., Moore G. A., and Orrenius S. (1989) 2.5-Di(tert-butyl)l,4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. J Biol. Chem. 264, 15,192–15,198.
Knight D. E. (1981) Rendering cells permeable by exposure to electric fields, in Techniques in Cellular Physiology P113 Elsevier/North Holland Seientific, Amsterdam, pp. 1–20.
Kobayashi S., Kitazawa T, Somlyo A. V, and Somlyo, A. P. (1989) Cytosolic heparin inhibits muscarinic and a-adrenergic Ca2+ release in smooth muscle. J. Biol. Chem. 264, 17,997–18,004.
Kuno M. and Gardner P. (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326, 301–304.
Lai P. A., Erickson H. P., Rousseau E., Liu Q.-Y., and Meissner G. (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331, 315–319.
Lassalles A. J. P. and Kado R. T. (1990) Opening of Ca2+ channels in isolated red beet root vacuole by inositol 1,4,5-trisphosphate. Nature 343, 567–570.
McIntosh R. P. and McIntosh J. E. A. (1990) Metabolism of the biologically active inositol phosphates Ins(1,4,5)P 3 and Ins(1,3,4,5)P 4 by ovarian follicles of Xenopus laevis. Bicchem. J. 268, 141–145.
Maeda N., Kawasaki T., Nakade S, Yokota N. Taguchi T., Kasai M., and Mikoshiba K. (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J. Biol. Chem. 266, 1109–1116.
Maeda N., Niinobe M., and Mikoshiba K. (1990) A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP 3) receptor protein. Purification and characterisation of InsP3 receptor. EMBO J. 9, 61–68.
Maeda N., Niinobe M, Inoue Y., and Mikoshiba K. (1989) Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in the mouse. Dev. Biol. 133, 67–76.
Malgoroli A., Pesce R., and Meldolesi J. (1990) Spontaneous [Ca2+] fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine-and ryanodine-sensitive intracellular Ca2+ store. J. Biol. Chem. 265, 3005–3008.
Marcotte G. V., Millard P. J., and Fewtrell C. (1990) Release of calcium from intracellular stores in rat basophilic leukemia cells monitored with the fluorescent probe chlortetracycline. J. Cell Physiol. 142, 78–88.
Matsumoto T., Kanaide H., Shogakiuchi Y., and Nakamura M. (1990) Characteristics of the histamine-sensitive calcium stores of vascular smooth muscle. Comparison with norepinephrine-or caffeine-sensitive stores. J. Biol. Chem. 265, 5610–5616.
Meldolesi J., Madeddu L., and Pozzan T. (1990) Intracellular Ca2+ storage organelles in non muscle cells: Heterogeneity and functional assignment, Biochim. Biophys. Acta 1055, 130–140.
Merritt J. E. and Rink T. J. (1987) Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J. Biol. Chem. 262, 17,362–17,369.
Merritt J, E, McCarthy S. A., Davies M. P. A., and Moores K. E. (1990) Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils: Loading cells with the dye; calibration of traces; measurements in the presence of plasma; buffering of cytosolic Ca2+. Biochem. J 269, 513–519.
Merritt J. E, Taylor C. W, Rubin R. P., and Putney J. W. (1986) Evidence suggesting that a novel guanine nucleotide-dependent regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 232, 435–438.
Meyer T. and Stryer L. (1988) Molecular model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. USA 85, 5051–5055.
Meyer T., Holowka D., and Stryer L. (1988) Highly cooperative opening of calcium channels by inositol 1,4,5-tisphosphate. Science 240, 653–656.
Meyer T., Wensel T., and Stryer L. (1990) Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29, 32–37.
Michell R. H. (1975) Inositol phospholipids and cell surface receptor function. Biochim. Biophys, Acta 415, 81–147.
Michell R. H., Drummond A. H., and Downes C. P. (1989) Inositol Lipids in Cell Signalling Academic, London, pp. 534.
Mignery G. A., Südhof T, G, Takei K., and Camilli P. D. (1989) Putative receptor for inositol 1,4,,5-trisphosphate similar to ryanodine receptor. Nature 342, 192–195.
Miledi R. and Parker I. (1989) Latencies of membrane currents evoked in Xenopus oocytes by receptor activation, inositol trisphosphate and calcium. J. Physiol. 415, 189–210.
Morris A. P., Gallacher D. V., Irvine R. F., and Petersen O. H. (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+channels. Nature 330, 653–655.
Muallem S, Pandol S. J., and Beeker T. G. (1989) Hormone-evoked calcium release is a quantal process. J. Biol. Chem. 264, 205–212.
Muallem S, Schoeffield M, Pandol S., and Sachs G. (1985) Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 82, 4433–4437.
Mullaney J. M., Yu M., Ghosh T. K., and Gill D. L. (1988) Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc. Natl. Acad. Sci. USA 85, 2499–2503.
Munson P. J. and Rodbard D. (1980) LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220–239.
Nahorski S. R. and Potter B. V. L. (1989) Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol. Sci. 10, 139–144.
Nishizuka Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661–665.
Norman A. W., Demel R. A., DeKruyff B., Geurts Van Kessel W. S. M., and Van Deenen L. L. M (1972) Studies on the biological properties of polyene antibiotics: Comparison of other polyenes with filipin in their ability to interact specifically with sterol. Biochim. Biophys. Acta Öbd290, 1–14.
Nunn D. L. and Taylor C. W. (1990) Liver inositol 1,4,5-trisphosphate-bind-ing sites are the calcium-mobilizing receptors. Biochem. J. (in press).
Nunn D. L., Potter B. V. L., and Taylor C. W. (1990) Molecular target size of inositol trisphosphate receptors in cerebellum and liver. Biochem. J. 266, 189–194.
Ogden D. C., Capiod T., Walker J. W., and Trentham D. R. (1990) Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes. J. Physiol. 422, 585–602.
Oldershaw K. A. and Taylor C. W. (1990) 2,5-Di(tert-butyl)-1,4-benzo-hydroquione mobilizes inositol 1,4,5-trisphosphate-sensitive and insensitive Ca2+ stores. Febs Lett. 274, 214–216.
O’Rourke P. and Feinstein B. (1990) The inositol 1,4,5-trisphosphate receptor binding sites of platelet membranes. Biochem.J. 267, 297–302.
O’Sullivan A. J., Cheek T. R., Moreton R. B, Berridge M. J., and Burgoyne R. D. (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 8, 401–411.
Palade P. (1987) Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. J. Biol. Chem. 262, 6135–6141.
Payne R. and Fein A. (1987) Inositol 1,4,5-trisphosphate releases calcium from specialized sites within Limulus photoreceptors. J. Cell Biol. 104, 933–937.
Polokoff M. A., Bencen G. H, Vacca J. P., de Solms S. J., Young S. D., and Huff J. R. (1988) Metabolism of synthetic inositol trisphosphate analogs. J. Biol. Chem. 263, 11,922–11,927.
Prentki M., Wollheim C. B., and Lew P. D. (1984) Ca2+ homeostasis in permeablized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-trisphosphate, J. Biol. Chem. 259, 13,777–13,782.
Putney J. W. (1986a) Receptor Biochemistry and Methodology vol. 7: Phosphoinositides and Receptor Mechanisms. Alan R. Liss, NY.
Putney J. W. (1986b) A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12.
Raess B. U., Record D. M, and Tunnicliff G. (1985) Interaction of phenylgly-oxal with the human erythrocyte (Ca2+ + Me)-ATPase. Mol. Pharmacol. 27, 444–450.
Riordan F. (1979) Arginyl residues and anion binding sites in proteins. Mol. Cell. Biochem. 26, 71–92.
Rooney T. A., Sass E. J., and Thomas A. P. (1990) Agonist-induced cytosolic calcium oscillations originating from a specific locus in single hepatocytes. J. Biol. Chem. 265, 10,792–10,796.
Ross C. A., Meldolesi J., Milner T. A., Satah T., Supattapone S., and Snyder S. H. (1989) Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339, 468–470.
Rossier M. F., Bird G. St. J., and Putney J. W. (1991) Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Biochem. J. 274, 643–650.
Rozengurt E. and Heppel L. A. (1975) A specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem. Biophys Res.Commun. 67, 1581–1588.
Shah J. and Pant H. C. (1988) Potassium channel blockers inhibit inositol trisphosphate-induced calcium release in the microsomal fraction isolated from rat brain. Bioch. J. 250, 617–620.
Shears S. B. (1989) Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260, 313–324
Smith J. B., Smith L., and Higgins B. L. (1985) Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J.Biol. Chem. 260, 14,413–14,416.
Somlyo A. P., Bond M., and Somlyo A. V. (1985) Calcium content of mitochondria and endoplasmic reticulum in liver rapidly frozen in vivo. Nature 314, 622–625.
Spat A., Bradford P. G, McKinney J. S., Rubin R. P., and Putney J. W. (1986) A saturable receptor for 32P-inositoE1,4,5-trisphosphate in hepatocytes and neutrophils. Nature 319, 514–516.
Streb H. and Schulz I. (1983) Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas. Am. J. Physiol. 245, G347–G357.
Streb H., Irvine R. P., Berridge M. J., and Schulz I. (1983) Release of calcium from nonmitochondrial stores in pancreatic acinar cells by inositol-1,4,5trisphosphate. Nature 306, 67–69.
Streb H., Bayerdorffer E, Haase W., Irvine R. P., and Schulz I. (1984) Effect of inositol-1,4,5trisphosphate on isolated subcellular fractions of rat pancreas. J. Membr. Biol. 81, 241–253.
Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., and Snyder S. H. (1988a) Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Nutl. Acad. Sci. USA 85, 8747–8750.
Supattapone S., Worley P. P., Baraban J. M., and Snyder S. H. (1988b) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263, 1530–1534.
Takemura H. and Putney J. W. (1989) Capacitative calcium entry in parotid acinar cells. Biochem. J. 258, 409–412.
Taylor C. W. (1990a) Receptor-regulated Ca2+ entry: Secret pathway or secret messenger. Trends Pharmacol. Sci. 11, 269–271.
Taylor C. W. (1990b) The role of G proteins in transmembrane signalling. Biochem. J. 272, 1–13.
Taylor C. W. and Merritt J. E. (1986) Receptor coupling to polyphosphoin-ositide turnover: a parallel with the adenylate cyclase system. Trends Pharmacol. Sci. 7, 238–242.
Taylor C. W. and Potter B. V. L. (1990) The size of inositol 1,4,5-trisphosphate-sensitive Ca2+ pools depends on inositol trisphosphate concentration. Biochem. J. 266, 189–194.
Taylor C. W. and Putney J. W. (1985) Size of the inositol trisphosphate-sensitive calcium pool in guinea-pig hepatocytes. Biochem. J. 232, 435–438.
Taylor C. W., Berridge M. J., Cooke A. M, and Potter B. V. L. (1989) Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium. Biochem. J. 259, 645–650.
Thastrup O., Cullen P. J., DrØbak B. K, Hartley M. R., and Dawson A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. USA 87, 2466–2470.
Thelestam M. and Mollby R. (1979) Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects on human fibroblasts. Biochim. Biophys. Acta 557, 156–169.
Thevenod R., Dehlinger-Kremer M., Kemmer T. P., Christian A.-L., Potter B. V. L, and Schulz I. (1989) Characterization of inositol 1,4,5-trisphos-phate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J. Membr. Biol. 109, 173–186.
Thomas M. V. (1982) Techniques in Calcium Research. Academic, London, p. 214.
Thompson S. T., Cass K. H, and Stellwagen E. (1975) Blue dextran-Sepharose: An affinity column for the dinucleotide fold in proteins. Proc. Natl. Acad. Sci. USA 72, 669–672.
Tones M. A., Bootman M. D., Higgins B. P., Lane D. A., Pay G. F, and Lindahi U. (1989) The effect of heparin on the inositol 1,4,5 trisphosphate receptor in rat liver microsomes: Dependence on sulphate content and chain length. FEBS Lett. 252, 105–108.
Tsien R. Y. (1989) Fluorescent probes of cell signaling. Annu. Ren. Neurosci. 12, 227–253.
Vilven J. and Coronado R. (1988) Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature 336, 587–589.
Volpe P., Krause K.-H., Hashimoto S., Zorzato F, Pozzan T., Meldolesi J., and Lew D. P. (1988) “Calciosome,” a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ stores of nonmuscle cells? Proc. Natl. Acad. Sci. USA 85, 1091–1095.
Wakui M., Potter B. V. L., and Petersen O. H. (1989) Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339, 317–320.
Willems P. H. G. M., DeJong M. D., DePont J. J. H. H. M., and van OS C. H. (1990) Ca2+-sensitivity of inositol 1,4,5-trisphosphate-mediated Ca2+ release in permeabilized pancreatic acinar cells. Biochem. J. 265, 681–687.
Woods N. M., Cuthbertson K. S. R., and Cobbold P. H. (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepa-tocytes. Nature 319, 600–602.
Worley P. P., Baraban J. M, Supattapone S., Wilson V. S., and Snyder S. H. (1987) Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262, 12,132–12,136.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1992 The Humana Press Inc.
About this protocol
Cite this protocol
Taylor, C.W., Bond, J.M., Nunn, D.L., Oldershaw, K.A. (1992). Inositol Triphosphate Receptors and Intracellular Calcium. In: Boulton, A.A., Baker, G.B., Taylor, C.W. (eds) Intracellular Messengers. Neuromethods, vol 20. Humana Press. https://doi.org/10.1385/0-89603-207-8:79
Download citation
DOI: https://doi.org/10.1385/0-89603-207-8:79
Publisher Name: Humana Press
Print ISBN: 978-0-89603-207-1
Online ISBN: 978-1-59259-625-6
eBook Packages: Springer Protocols