Skip to main content

Inositol Triphosphate Receptors and Intracellular Calcium

Experimental Approaches

  • Protocol
  • 273 Accesses

Part of the Neuromethods book series (NM,volume 20)

Abstract

Inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) was first shown to stimulate mobilization of intracellular Ca2+ from permeabilized pancreatic acinar cells (Streb et al., 1983) and has since become recognized as an intracellular messenger formed after receptor activation and then responsible for mobilizing Ca2+ from the intracellular stores of many different cell types. The interactions between most receptors and the phosphoinositidase C (PIC) that catalyzes formation of Ins(1,4,5)P 3 and 1,2-diacylglycerol (DG) have much in common with the more completely understood interactions between receptors and adenylyl cyclase (Gilman, 1987; Taylor, 1990b; Fig. 1). In both cases, agonist-occupied receptors catalyze activation of a specific guanine nucleotide dependent regulatory protein(s) (G protein) by allowing it to lose its tightly bound GDP and replace it with GTP. The active GTP-bound G protein, which has yet to be identified for the phosphoinositide pathway, then regulates the activity of an intracellular effector, for example, adenylyl cyclase or PIC. Stimulation of the latter causes increased hydrolysis of the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdInsP 2), and the formation of Ins(1,4,5)P 3 and DG.

Receptor-regulated formation of Ins(1,4,5)P 3 The complex of receptor (R) and agonist (A) catalyzes the exchange of GDP for GTP on an unidentified G protein. Binding of GTP to the α subunit of the oligomeric G protein probably promotes its dissociation into α-GTP and βγ subunits. The former probably directly stimulates PIC activity until its intrinsic GTPase activity hydrolyzes the bound GTP, inactivating it and allowing it to reassociate with the βγ complex to form the complete G protein. Active PIC catalyzes hydrolysis of PtdInsP2to Ins(1,4,5)P 3 and diacyglycerol. The latter can activate certain proteins kinase C before its metabolism by a specific kinase to phosphatidic acid or by specific lipases that remove the fatty acid residues. Ins(1,4,5)P 3 enters the cytosol and regulates Ca2+ mobilization from intracellular stores before it is metabolized by a specific 5-phosphatase or 3-kinase. The Ins(l,4)P 2 and Ins(1,3,4,5)P 4 formed are the first substrates of a complex series of phosphorylation and dephosphorylation reactions (not shown) that can eventually lead to inositol that can be recycled to the membrane phosphoinositides.

Keywords

  • Sarcoplasmic Reticulum
  • Ryanodine Receptor
  • Intracellular Store
  • Inositol Phosphate
  • Pancreatic Acinar Cell

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Ahnert-Hilger G. and Gratzl M. (1988) Controlled manipulation of the cell interior by pore-forming proteins. Trends Pharmacol. Sci. 9, 195–197.

    PubMed  CAS  Google Scholar 

  • Adunyah S. E. and Dean W. L. (1986) Effects of sulfhydryl reagents and other inhibitors on Ca2+ transport and inositol trisphosphate-induced Ca2+ release from human platelet membranes. J. Biol. Chem. 261, 13,071–13,075.

    PubMed  CAS  Google Scholar 

  • Ammann D. (1986) Ion-Selective Electrodes Principles Design and Application, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Atkinson T., Hammond P. M, Hartwell R. D., Hughes P., Scawen M. D., Sherwood R. F., Smau D. A. P., Bruton C. J., Harvey M. J., and Lowe C. R. (1981) Triazine dye affinity chromatography. Biochem. Soc. Trans. 9, 290–293.

    PubMed  CAS  Google Scholar 

  • Berridge M. J. (1988) Inositol trisphosphate-induced membrane potential osciuations in Xenopus oocytes. J Physiol. 403, 589–599.

    PubMed  CAS  Google Scholar 

  • Berridge M. J. (1989) Inositol trisphosphate-induced calcium mobilization is localized in Xenopus oocytes. Proc. R. Soc. Land. Biol. 238, 235–243.

    CAS  Google Scholar 

  • Berridge M. J. and Galione A. (1988) CytosoIic calcium oscillators. FASEB J. 2, 3074–3082.

    PubMed  CAS  Google Scholar 

  • Berridge M. J. and Irvine R. P. (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.

    PubMed  CAS  Google Scholar 

  • Berridge M. J. and Irvine R. P. (1989) Inositol phosphates and cell signalling. Nature 341, 197–205.

    PubMed  CAS  Google Scholar 

  • Berridge M. J. and Michell R. H. (1988) Inositol Lipids and Transmembrane Signalling (The Royal Society, London), p. 200.

    Google Scholar 

  • Berridge M. J., Cobbold P. H., and Cuthbertson K. S. R. (1988) Spatial and temporal aspects of cell signalling. Philos. Trans. R. Soc. Lond. Biol. 320, 325–343.

    PubMed  CAS  Google Scholar 

  • Bootman M. D., Pay G. F, Rick C. E., and Tones M. A. (1990) Two sulphonated dye compounds which compete for inositol 1,4,5-trisphosphate binding to rat liver microsomes: effects on S’phosphatase activity. Biochem. Biophys. Res. Commun. 166, 1334–1339.

    PubMed  CAS  Google Scholar 

  • Boyan B. D. and Clement-Cormier Y. (1984) Organic solvent extraction of membrane proteins, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C., eds.), Liss, NY, pp. 47–64.

    Google Scholar 

  • Burgess G. M, Irvine R. F., Berridge M. J., McKinney J. S., and Putney J. W. (1984) Actions of inositol phosphates on Ca2+ pools in guinea-pig hepa-tocytes. Biochem. J. 224, 741–746.

    PubMed  CAS  Google Scholar 

  • Burgess G. M., McKinney J. S., Pabiato A., Leslie B. A., and Putney J. W. (1983) Calcium pools in saponin-permeabilized guinea-pig hepatocytes. J. Biol. Chem. 258, 15,336–15,345.

    PubMed  CAS  Google Scholar 

  • Burgoyne R. D, Cheek T. R, Morgan A., O’Sullivan A. J., Moreton R. B., Berridge M.J., Mata A. M., Colyer J., Lee A. G., and East J. M. (1989) Distribution of two distinct Car2+-ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaffin cells. Nature 342, 72–74.

    PubMed  CAS  Google Scholar 

  • Campbell A. K. (1983) Intracellular Calcium. Its Universal Role as Regulator. (John Wiley, Colchester).

    Google Scholar 

  • Caswell A. H. (1979) Methods of measuring intracellular calcium. Int. Rev. Cytol. 56, 145–165.

    PubMed  CAS  Google Scholar 

  • Chadwick C. C., Saito A., and Fleischer S. (1990) Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc. Natl. Acad. Sci. USA 87, 2132–2136.

    PubMed  CAS  Google Scholar 

  • Challis R. A. J., Chilvers E. R., Willcocks A. L., and Nahorski S. R. (1990) Heterogeneity of [3H]inositol 1,4,5-trisphosphate binding sites in adrenal cortical membranes. Characterization and validation of a radioreceptor assay. Biochem. J. 265, 421–427.

    Google Scholar 

  • Champeil P., Combettes L., Berthon B., Doucet E., Orlowski S., and Claret M. (1989) Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J. Biol. Chem. 264, 17,665–17,673.

    PubMed  CAS  Google Scholar 

  • Cheek T. R. (1989) Spatial aspects of calcium signalling. J. Cell Sci. 93, 211–216.

    PubMed  Google Scholar 

  • Cheuh S,-H. and Gill D. L. (1986) Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanism. J. Biol. Chem. 261, 13,883–13,886.

    Google Scholar 

  • Chilvers E. R., Challiss R. A. J., Willcocks A. L., Potter B. V. L., Barnes P. J., and Nahorski S. R. (1990) Characterization of stereospecific binding sites for inositol 1,4,5-trisphosphate in airway smooth muscle. Br. J. Pharmacol. 99, 297–302.

    PubMed  CAS  Google Scholar 

  • Cobbold P. H. and Rink T. J. (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem. J. 248, 313–328.

    PubMed  CAS  Google Scholar 

  • Cobbold P., Dixon J., Sanchez-Bueno A., Woods N., Daly M., and Cuthbertson K. (1990) Receptor control of calcium transients, in Trans-membrane Signalling. Intracellular Messengers and Implications for Drug Development (Nahorski S. R., ed.), John Wiley, Chichester, UK, pp. 185–206.

    Google Scholar 

  • Cockcroft S. and Gomperts B. D. (1979) ATP induces nucleotide permeability in rat mast cells. Nature 279, 541,542.

    Google Scholar 

  • Cotton P. A., Day V. W. Hazen E. E, and Larsen S. (1973) Structure of methyl-guanidium dihydrogenorthophosphate. A model compound for argi-nine-phosphate hydrogen bonding. J, Am. Chem. Soc. 95, 4834–4840.

    CAS  Google Scholar 

  • Danoff S. K., Supattapone S., and Snyder S. H. (1988) Characterization of membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem. J. 254, 701–705.

    PubMed  CAS  Google Scholar 

  • Dawson A. P. (1985) GTP enhances inositol trisphosphate-stimulated Ca2+ release from liver microsomes. FEBS Lett. 185, 147–150

    PubMed  CAS  Google Scholar 

  • Dawson A. P. and Irvine R. P. (1984) Inositol(l,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biohem. Biophys. Res. Commun. 120, 858–864

    CAS  Google Scholar 

  • Downes C. P. and Michell R. H. (1985) Inositol phospholipid breakdown as a receptor-controlled generator of second messengers, in Molecular Mechanisms of Transmembrane Signalling (Cohen P. and Houslay M. D., eds.), Elsevier Science, Amsterdam, pp. 3–56.

    Google Scholar 

  • Downes C. P., Berrie C. P., Hawkins P. T, Stephens L., Boyer J. L., and Harden T. K. (1988) Receptor and G-protein-dependent regulation of turkey erythrocyte phosphoinositidase C. Philos. Trans. R. Soc. Land. Biol. 320, 267–280.

    CAS  Google Scholar 

  • Ehrlich B. E. and Watras J. (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336, 583–586

    PubMed  CAS  Google Scholar 

  • El-Rafei M. F. (1984) Assay of soluble receptors, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C., eds.), Alan R. Liss, NY, pp. 99–108.

    Google Scholar 

  • Ferris C. D., Huganir R. L., Supattapone S., and Snyder S. H. (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342, 87–89.

    PubMed  CAS  Google Scholar 

  • Föhr K. J., Scott J., Ahnert-Hilger G., and Gratzl M. (1989) Characterization of the inositol 1,4,5-trisphosphate-induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p-hydroxymercuribenzoate. Biochem. J. 262, 83–89.

    PubMed  Google Scholar 

  • Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N, and Mikoshiba K. (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342, 32–38.

    PubMed  CAS  Google Scholar 

  • Gill D. L. (1989) Receptor kinships revealed. Nature 342, 16–18.

    PubMed  CAS  Google Scholar 

  • Gilman A. G. (1987) G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    PubMed  CAS  Google Scholar 

  • Glauert A. M, Dingle J. T., and Lucy J. A. (1962) Action of saponin on biological cell membranes, Nature 196, 952–955.

    PubMed  Google Scholar 

  • Gogelein H. and Huby A. (1984) Interactions of saponin and digitonin with black lipid membranes and lipid monolayers. Biochim. Biophys. Acta 773, 32–38.

    PubMed  CAS  Google Scholar 

  • Goldbeter A., DuPont G., and Berridge M. J. (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA 87, 1461–1465.

    PubMed  CAS  Google Scholar 

  • Guillemette G. and Segui J. A. (1988) Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-triphosphate in the bovine adrenal cortex. Mol. Endocrinol. 2, 1249–1255

    PubMed  CAS  Google Scholar 

  • Guillemette G, Balla T., Baukal A. J. and Catt K. J. (1988) Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in hepatic plasma membrane fractions. J. Biol. Chem. 263, 4541–4548.

    PubMed  CAS  Google Scholar 

  • Guillemette G., Favreau I., Lamontagne S., and Boulay G. (1990) 2,3-diphos-phoglycerate is a nonselective inhibitor of inositol 1,4,5 trisphosphate action and metabolism. Eur. J. Pharmacol. 188, 251–260.

    PubMed  CAS  Google Scholar 

  • Henne V., Mayr G. W, Grabowski B., Koppitz B., and Söling H.-D. (1988) Semisynthetic derivatives of inositol 1,4,5-trisphosphate substituted at the 1-phosphate group. Eur. J. Biochem. 174, 95–101.

    PubMed  CAS  Google Scholar 

  • Hirata M., Watanabe Y., Ishimatsu T., Yanaga P., Koga T., and Ozaki S. (1990) Inositol 1,4,5-trisisphosphate affinity chromatography. Biochem. Biophys. Res. Commun. 168, 379–386.

    PubMed  CAS  Google Scholar 

  • Hirata M., Watanabe Y., Ishimatsu T., Ikebe T., Kimura Y., Yamaguchi K., Ozaki S., and Koga T. (1989) Synthetic inositol trisphosphate analogs and their effects on phosphatase, kinase, and the release of Ca2+]. J. Biol. Chem. 264, 20,303–20,308.

    PubMed  CAS  Google Scholar 

  • Hjelmeland L. M. and Chrambrach A. (1984) Solubilization of functional membrane bound receptors, in Receptor Biochemistry and Methodology vol. 1, Membranes, Detergents and Receptor Solubilization (Venter J. C. and Harrison L. C, eds.), Alan R. Liss, NY, pp. 35–46.

    Google Scholar 

  • Hodgson M. E. and Shears S. B. (1990) Rat liver contains a potent endogenous inhibitor of inositol 1,3,4,5-tetrakisphosphate 3-phosphatase. Biochem. J. 267, 831–834.

    PubMed  CAS  Google Scholar 

  • Horne W. A., Weiland G. A., Oswald R. E., and Cerione R. A. (1986) Rapid incorporation of the solubilized dihydropyridine receptor into phos-pholipid vesicles. Biochim. Biophys. Acta 863, 205–212.

    PubMed  CAS  Google Scholar 

  • Horstman D. A., Takemura H., and Putney J. W. (1988) Formation and metabolism of [3H]inositol phosphates in AR42J pancreatoma cells. J. Biol. Chem. 263, 15,297–l5,303.

    PubMed  CAS  Google Scholar 

  • Hughes A. R, Takemura H., and Putney J. W. (1988) Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells. J. Biol. Chem. 263, 10,314–10,319.

    PubMed  CAS  Google Scholar 

  • Irvine R. F. (1989) Functions of inositol phosphates, in Inositol Lipids in Cell Signalling (Michell R. H., Drummond A. H., and Downes C. P., eds.), Academic, London, pp. 135–161.

    Google Scholar 

  • Irvine R. F. (1990) “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett. 263, 5–9.

    PubMed  CAS  Google Scholar 

  • Irvine R. F. and Moor R. M. (1986) Micro-injection of inositol 1,3,4,5-tetra-kisphosphate activates sea urchin eggs by a mechanism dependent on extrernal Ca2+. Biochem. J. 240, 917–920.

    PubMed  CAS  Google Scholar 

  • Jacob R. (1990) Calcium oscillations in electrically nonexcitable cells. Biochim. Biophys. Acta 1052, 427–438.

    PubMed  CAS  Google Scholar 

  • Jacob R., Merritt J. E, Hallam T. J., and Rink T. J. (1988) Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 335, 40–45.

    PubMed  CAS  Google Scholar 

  • Jean T. and Klee C. B. (1986) Calcium modulation of inositol 1,4,5-trisphos-phate-induced calcium release from neuroblastoma x glioma hybrid (NGlOS-15) microsomes. J Biol. Chem. 261, 16,414–16,420.

    PubMed  CAS  Google Scholar 

  • Joseph S. K. and Williamson J. R. (1986) Characteristics of inositol trisphos-phate-mediated Ca2+ release from permeabilized hepatocytes. J. Biol. Chem. 261, 14,658–14,664.

    PubMed  CAS  Google Scholar 

  • Joseph S. K. and Williamson J. R. (1989) Inositol polyphosphates and intra-cellular calcium release. Arch. Biochem. Biophys. 273, 1–15.

    PubMed  CAS  Google Scholar 

  • Joseph S. K., Rice H. L, and Williamson J. R. (1989) The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem. J 258, 261–265.

    PubMed  CAS  Google Scholar 

  • Joseph S. K, Thomas A. P., Williams R. J., Irvine R. F., and Williamson J. R. (1984) myo-Inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J. Biol. Chem. 259, 3077–3081.

    PubMed  CAS  Google Scholar 

  • Kass G. E. N, Duddy S. K., Moore G. A., and Orrenius S. (1989) 2.5-Di(tert-butyl)l,4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. J Biol. Chem. 264, 15,192–15,198.

    PubMed  CAS  Google Scholar 

  • Knight D. E. (1981) Rendering cells permeable by exposure to electric fields, in Techniques in Cellular Physiology P113 Elsevier/North Holland Seientific, Amsterdam, pp. 1–20.

    Google Scholar 

  • Kobayashi S., Kitazawa T, Somlyo A. V, and Somlyo, A. P. (1989) Cytosolic heparin inhibits muscarinic and a-adrenergic Ca2+ release in smooth muscle. J. Biol. Chem. 264, 17,997–18,004.

    PubMed  CAS  Google Scholar 

  • Kuno M. and Gardner P. (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326, 301–304.

    PubMed  CAS  Google Scholar 

  • Lai P. A., Erickson H. P., Rousseau E., Liu Q.-Y., and Meissner G. (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331, 315–319.

    PubMed  CAS  Google Scholar 

  • Lassalles A. J. P. and Kado R. T. (1990) Opening of Ca2+ channels in isolated red beet root vacuole by inositol 1,4,5-trisphosphate. Nature 343, 567–570.

    Google Scholar 

  • McIntosh R. P. and McIntosh J. E. A. (1990) Metabolism of the biologically active inositol phosphates Ins(1,4,5)P 3 and Ins(1,3,4,5)P 4 by ovarian follicles of Xenopus laevis. Bicchem. J. 268, 141–145.

    CAS  Google Scholar 

  • Maeda N., Kawasaki T., Nakade S, Yokota N. Taguchi T., Kasai M., and Mikoshiba K. (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J. Biol. Chem. 266, 1109–1116.

    PubMed  CAS  Google Scholar 

  • Maeda N., Niinobe M., and Mikoshiba K. (1990) A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP 3) receptor protein. Purification and characterisation of InsP3 receptor. EMBO J. 9, 61–68.

    PubMed  CAS  Google Scholar 

  • Maeda N., Niinobe M, Inoue Y., and Mikoshiba K. (1989) Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in the mouse. Dev. Biol. 133, 67–76.

    PubMed  CAS  Google Scholar 

  • Malgoroli A., Pesce R., and Meldolesi J. (1990) Spontaneous [Ca2+] fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine-and ryanodine-sensitive intracellular Ca2+ store. J. Biol. Chem. 265, 3005–3008.

    Google Scholar 

  • Marcotte G. V., Millard P. J., and Fewtrell C. (1990) Release of calcium from intracellular stores in rat basophilic leukemia cells monitored with the fluorescent probe chlortetracycline. J. Cell Physiol. 142, 78–88.

    PubMed  CAS  Google Scholar 

  • Matsumoto T., Kanaide H., Shogakiuchi Y., and Nakamura M. (1990) Characteristics of the histamine-sensitive calcium stores of vascular smooth muscle. Comparison with norepinephrine-or caffeine-sensitive stores. J. Biol. Chem. 265, 5610–5616.

    PubMed  CAS  Google Scholar 

  • Meldolesi J., Madeddu L., and Pozzan T. (1990) Intracellular Ca2+ storage organelles in non muscle cells: Heterogeneity and functional assignment, Biochim. Biophys. Acta 1055, 130–140.

    PubMed  CAS  Google Scholar 

  • Merritt J. E. and Rink T. J. (1987) Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J. Biol. Chem. 262, 17,362–17,369.

    PubMed  CAS  Google Scholar 

  • Merritt J, E, McCarthy S. A., Davies M. P. A., and Moores K. E. (1990) Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils: Loading cells with the dye; calibration of traces; measurements in the presence of plasma; buffering of cytosolic Ca2+. Biochem. J 269, 513–519.

    PubMed  CAS  Google Scholar 

  • Merritt J. E, Taylor C. W, Rubin R. P., and Putney J. W. (1986) Evidence suggesting that a novel guanine nucleotide-dependent regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 232, 435–438.

    Google Scholar 

  • Meyer T. and Stryer L. (1988) Molecular model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. USA 85, 5051–5055.

    PubMed  CAS  Google Scholar 

  • Meyer T., Holowka D., and Stryer L. (1988) Highly cooperative opening of calcium channels by inositol 1,4,5-tisphosphate. Science 240, 653–656.

    PubMed  CAS  Google Scholar 

  • Meyer T., Wensel T., and Stryer L. (1990) Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29, 32–37.

    PubMed  CAS  Google Scholar 

  • Michell R. H. (1975) Inositol phospholipids and cell surface receptor function. Biochim. Biophys, Acta 415, 81–147.

    CAS  Google Scholar 

  • Michell R. H., Drummond A. H., and Downes C. P. (1989) Inositol Lipids in Cell Signalling Academic, London, pp. 534.

    Google Scholar 

  • Mignery G. A., Südhof T, G, Takei K., and Camilli P. D. (1989) Putative receptor for inositol 1,4,,5-trisphosphate similar to ryanodine receptor. Nature 342, 192–195.

    PubMed  CAS  Google Scholar 

  • Miledi R. and Parker I. (1989) Latencies of membrane currents evoked in Xenopus oocytes by receptor activation, inositol trisphosphate and calcium. J. Physiol. 415, 189–210.

    PubMed  CAS  Google Scholar 

  • Morris A. P., Gallacher D. V., Irvine R. F., and Petersen O. H. (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+channels. Nature 330, 653–655.

    PubMed  CAS  Google Scholar 

  • Muallem S, Pandol S. J., and Beeker T. G. (1989) Hormone-evoked calcium release is a quantal process. J. Biol. Chem. 264, 205–212.

    PubMed  CAS  Google Scholar 

  • Muallem S, Schoeffield M, Pandol S., and Sachs G. (1985) Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 82, 4433–4437.

    PubMed  CAS  Google Scholar 

  • Mullaney J. M., Yu M., Ghosh T. K., and Gill D. L. (1988) Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc. Natl. Acad. Sci. USA 85, 2499–2503.

    PubMed  CAS  Google Scholar 

  • Munson P. J. and Rodbard D. (1980) LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220–239.

    PubMed  CAS  Google Scholar 

  • Nahorski S. R. and Potter B. V. L. (1989) Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol. Sci. 10, 139–144.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661–665.

    PubMed  CAS  Google Scholar 

  • Norman A. W., Demel R. A., DeKruyff B., Geurts Van Kessel W. S. M., and Van Deenen L. L. M (1972) Studies on the biological properties of polyene antibiotics: Comparison of other polyenes with filipin in their ability to interact specifically with sterol. Biochim. Biophys. Acta Öbd290, 1–14.

    Google Scholar 

  • Nunn D. L. and Taylor C. W. (1990) Liver inositol 1,4,5-trisphosphate-bind-ing sites are the calcium-mobilizing receptors. Biochem. J. (in press).

    Google Scholar 

  • Nunn D. L., Potter B. V. L., and Taylor C. W. (1990) Molecular target size of inositol trisphosphate receptors in cerebellum and liver. Biochem. J. 266, 189–194.

    Google Scholar 

  • Ogden D. C., Capiod T., Walker J. W., and Trentham D. R. (1990) Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes. J. Physiol. 422, 585–602.

    PubMed  CAS  Google Scholar 

  • Oldershaw K. A. and Taylor C. W. (1990) 2,5-Di(tert-butyl)-1,4-benzo-hydroquione mobilizes inositol 1,4,5-trisphosphate-sensitive and insensitive Ca2+ stores. Febs Lett. 274, 214–216.

    PubMed  CAS  Google Scholar 

  • O’Rourke P. and Feinstein B. (1990) The inositol 1,4,5-trisphosphate receptor binding sites of platelet membranes. Biochem.J. 267, 297–302.

    CAS  Google Scholar 

  • O’Sullivan A. J., Cheek T. R., Moreton R. B, Berridge M. J., and Burgoyne R. D. (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 8, 401–411.

    CAS  Google Scholar 

  • Palade P. (1987) Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. J. Biol. Chem. 262, 6135–6141.

    PubMed  CAS  Google Scholar 

  • Payne R. and Fein A. (1987) Inositol 1,4,5-trisphosphate releases calcium from specialized sites within Limulus photoreceptors. J. Cell Biol. 104, 933–937.

    PubMed  CAS  Google Scholar 

  • Polokoff M. A., Bencen G. H, Vacca J. P., de Solms S. J., Young S. D., and Huff J. R. (1988) Metabolism of synthetic inositol trisphosphate analogs. J. Biol. Chem. 263, 11,922–11,927.

    PubMed  CAS  Google Scholar 

  • Prentki M., Wollheim C. B., and Lew P. D. (1984) Ca2+ homeostasis in permeablized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-trisphosphate, J. Biol. Chem. 259, 13,777–13,782.

    PubMed  CAS  Google Scholar 

  • Putney J. W. (1986a) Receptor Biochemistry and Methodology vol. 7: Phosphoinositides and Receptor Mechanisms. Alan R. Liss, NY.

    Google Scholar 

  • Putney J. W. (1986b) A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12.

    PubMed  CAS  Google Scholar 

  • Raess B. U., Record D. M, and Tunnicliff G. (1985) Interaction of phenylgly-oxal with the human erythrocyte (Ca2+ + Me)-ATPase. Mol. Pharmacol. 27, 444–450.

    PubMed  CAS  Google Scholar 

  • Riordan F. (1979) Arginyl residues and anion binding sites in proteins. Mol. Cell. Biochem. 26, 71–92.

    PubMed  CAS  Google Scholar 

  • Rooney T. A., Sass E. J., and Thomas A. P. (1990) Agonist-induced cytosolic calcium oscillations originating from a specific locus in single hepatocytes. J. Biol. Chem. 265, 10,792–10,796.

    PubMed  CAS  Google Scholar 

  • Ross C. A., Meldolesi J., Milner T. A., Satah T., Supattapone S., and Snyder S. H. (1989) Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339, 468–470.

    PubMed  CAS  Google Scholar 

  • Rossier M. F., Bird G. St. J., and Putney J. W. (1991) Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Biochem. J. 274, 643–650.

    PubMed  CAS  Google Scholar 

  • Rozengurt E. and Heppel L. A. (1975) A specific effect of external ATP on the permeability of transformed 3T3 cells. Biochem. Biophys Res.Commun. 67, 1581–1588.

    PubMed  CAS  Google Scholar 

  • Shah J. and Pant H. C. (1988) Potassium channel blockers inhibit inositol trisphosphate-induced calcium release in the microsomal fraction isolated from rat brain. Bioch. J. 250, 617–620.

    CAS  Google Scholar 

  • Shears S. B. (1989) Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260, 313–324

    PubMed  CAS  Google Scholar 

  • Smith J. B., Smith L., and Higgins B. L. (1985) Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J.Biol. Chem. 260, 14,413–14,416.

    PubMed  CAS  Google Scholar 

  • Somlyo A. P., Bond M., and Somlyo A. V. (1985) Calcium content of mitochondria and endoplasmic reticulum in liver rapidly frozen in vivo. Nature 314, 622–625.

    PubMed  CAS  Google Scholar 

  • Spat A., Bradford P. G, McKinney J. S., Rubin R. P., and Putney J. W. (1986) A saturable receptor for 32P-inositoE1,4,5-trisphosphate in hepatocytes and neutrophils. Nature 319, 514–516.

    PubMed  CAS  Google Scholar 

  • Streb H. and Schulz I. (1983) Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas. Am. J. Physiol. 245, G347–G357.

    PubMed  CAS  Google Scholar 

  • Streb H., Irvine R. P., Berridge M. J., and Schulz I. (1983) Release of calcium from nonmitochondrial stores in pancreatic acinar cells by inositol-1,4,5trisphosphate. Nature 306, 67–69.

    PubMed  CAS  Google Scholar 

  • Streb H., Bayerdorffer E, Haase W., Irvine R. P., and Schulz I. (1984) Effect of inositol-1,4,5trisphosphate on isolated subcellular fractions of rat pancreas. J. Membr. Biol. 81, 241–253.

    PubMed  CAS  Google Scholar 

  • Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., and Snyder S. H. (1988a) Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Nutl. Acad. Sci. USA 85, 8747–8750.

    CAS  Google Scholar 

  • Supattapone S., Worley P. P., Baraban J. M., and Snyder S. H. (1988b) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263, 1530–1534.

    PubMed  CAS  Google Scholar 

  • Takemura H. and Putney J. W. (1989) Capacitative calcium entry in parotid acinar cells. Biochem. J. 258, 409–412.

    PubMed  CAS  Google Scholar 

  • Taylor C. W. (1990a) Receptor-regulated Ca2+ entry: Secret pathway or secret messenger. Trends Pharmacol. Sci. 11, 269–271.

    PubMed  CAS  Google Scholar 

  • Taylor C. W. (1990b) The role of G proteins in transmembrane signalling. Biochem. J. 272, 1–13.

    PubMed  CAS  Google Scholar 

  • Taylor C. W. and Merritt J. E. (1986) Receptor coupling to polyphosphoin-ositide turnover: a parallel with the adenylate cyclase system. Trends Pharmacol. Sci. 7, 238–242.

    CAS  Google Scholar 

  • Taylor C. W. and Potter B. V. L. (1990) The size of inositol 1,4,5-trisphosphate-sensitive Ca2+ pools depends on inositol trisphosphate concentration. Biochem. J. 266, 189–194.

    PubMed  CAS  Google Scholar 

  • Taylor C. W. and Putney J. W. (1985) Size of the inositol trisphosphate-sensitive calcium pool in guinea-pig hepatocytes. Biochem. J. 232, 435–438.

    PubMed  CAS  Google Scholar 

  • Taylor C. W., Berridge M. J., Cooke A. M, and Potter B. V. L. (1989) Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium. Biochem. J. 259, 645–650.

    PubMed  CAS  Google Scholar 

  • Thastrup O., Cullen P. J., DrØbak B. K, Hartley M. R., and Dawson A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. USA 87, 2466–2470.

    PubMed  CAS  Google Scholar 

  • Thelestam M. and Mollby R. (1979) Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects on human fibroblasts. Biochim. Biophys. Acta 557, 156–169.

    PubMed  CAS  Google Scholar 

  • Thevenod R., Dehlinger-Kremer M., Kemmer T. P., Christian A.-L., Potter B. V. L, and Schulz I. (1989) Characterization of inositol 1,4,5-trisphos-phate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J. Membr. Biol. 109, 173–186.

    PubMed  CAS  Google Scholar 

  • Thomas M. V. (1982) Techniques in Calcium Research. Academic, London, p. 214.

    Google Scholar 

  • Thompson S. T., Cass K. H, and Stellwagen E. (1975) Blue dextran-Sepharose: An affinity column for the dinucleotide fold in proteins. Proc. Natl. Acad. Sci. USA 72, 669–672.

    PubMed  CAS  Google Scholar 

  • Tones M. A., Bootman M. D., Higgins B. P., Lane D. A., Pay G. F, and Lindahi U. (1989) The effect of heparin on the inositol 1,4,5 trisphosphate receptor in rat liver microsomes: Dependence on sulphate content and chain length. FEBS Lett. 252, 105–108.

    PubMed  CAS  Google Scholar 

  • Tsien R. Y. (1989) Fluorescent probes of cell signaling. Annu. Ren. Neurosci. 12, 227–253.

    CAS  Google Scholar 

  • Vilven J. and Coronado R. (1988) Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature 336, 587–589.

    PubMed  CAS  Google Scholar 

  • Volpe P., Krause K.-H., Hashimoto S., Zorzato F, Pozzan T., Meldolesi J., and Lew D. P. (1988) “Calciosome,” a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ stores of nonmuscle cells? Proc. Natl. Acad. Sci. USA 85, 1091–1095.

    PubMed  CAS  Google Scholar 

  • Wakui M., Potter B. V. L., and Petersen O. H. (1989) Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339, 317–320.

    PubMed  CAS  Google Scholar 

  • Willems P. H. G. M., DeJong M. D., DePont J. J. H. H. M., and van OS C. H. (1990) Ca2+-sensitivity of inositol 1,4,5-trisphosphate-mediated Ca2+ release in permeabilized pancreatic acinar cells. Biochem. J. 265, 681–687.

    PubMed  CAS  Google Scholar 

  • Woods N. M., Cuthbertson K. S. R., and Cobbold P. H. (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepa-tocytes. Nature 319, 600–602.

    PubMed  CAS  Google Scholar 

  • Worley P. P., Baraban J. M, Supattapone S., Wilson V. S., and Snyder S. H. (1987) Characterization of inositol trisphosphate receptor binding in brain. J. Biol. Chem. 262, 12,132–12,136.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 The Humana Press Inc.

About this protocol

Cite this protocol

Taylor, C.W., Bond, J.M., Nunn, D.L., Oldershaw, K.A. (1992). Inositol Triphosphate Receptors and Intracellular Calcium. In: Boulton, A.A., Baker, G.B., Taylor, C.W. (eds) Intracellular Messengers. Neuromethods, vol 20. Humana Press. https://doi.org/10.1385/0-89603-207-8:79

Download citation

  • DOI: https://doi.org/10.1385/0-89603-207-8:79

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-207-1

  • Online ISBN: 978-1-59259-625-6

  • eBook Packages: Springer Protocols