Skip to main content

Identification and Analysis of Function of Heterotrimeric Guanine Nucleotide-Binding Proteins Expressed in Neural Tissue

  • Protocol
Book cover Intracellular Messengers

Part of the book series: Neuromethods ((NM,volume 20))

Abstract

Most neurotransmitters, hormones, and growth factors that cause alterations in the rate of synthesis of intracellular messengers interact with cell surface receptors that are members of a family of single polypeptide proteins. Secondary and tertiary structure predictions for such receptors indicate that they are glycoproteins in which highly hydrophobic blocks of amino acids produce seven trans-plasma membrane-spanning elements. In all known cases, such receptors are required to interact with members of a family of heterotrimeric guanine nucleotide-binding proteins (G proteins) before agonist-induced alterations in the enzymatic activity of intracellular messenger-generating systems can be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali N, Milligan G., and Evans W. H. (1989) Distribution of G-proteins in rat liver plasma-membrane domains and endocytic pathways. Biochem.J. 261,905–912.

    PubMed  CAS  Google Scholar 

  • Asano T., Katada T., Gilman A. G., and Ross E. M. (1984) Activation of the inhibitory GTP-binding protein of adenylyl cyclase, G, by p-adrenergic receptors in reconstituted phospholipid vesicles.J, Biol. Chem. 259,9351–9354.

    CAS  Google Scholar 

  • BangaH. S., Walker R K., Winberry L. K, and Rittenhouse S. E. (1987) Pertussis toxin can activate human platelets. Comparative effects of holotoxin and its ADP-ribosylating Sl subunit.1. Biol. Chcm. 262,14871–14874.

    Google Scholar 

  • Bigay J., Deterre P., Pfister C., and Chabre M. (1985) Fluoroaluminates activate transducin-GDP by mimicking the δ phosphate of GTP at its binding site. FEBS Lett. 191,181–185.

    Article  PubMed  CAS  Google Scholar 

  • Birdsall N. J. M., Hulme E. C., and Burgen A. (1980) The character of the muscarinic receptors in different regions of the rat brain. Proc. R. Soc. Land. [Biol.] 207,1–12.

    Article  CAS  Google Scholar 

  • Birnbaumer L., Abramowitz J., and Brown A. M. (1990) Receptor-effecter coupling by G proteins. Biochim. Bioyhys. Acta 1031,163–226.

    CAS  Google Scholar 

  • Brann M. R., Collins R. M., and Spiegel A. (1987) Localization of mRNAs encoding the a subunits of signal-transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett. 222,191–198.

    Article  PubMed  CAS  Google Scholar 

  • Buss J. E., Mumby S. M., Casey P. J., Gilman A. G., and Sefton B. M. (1987) Myristoylated a subunits of guanine nucleotide binding regulatory proteins. Proc. Natl. Acad. Sci. USA 84,7493–7497.

    Article  PubMed  CAS  Google Scholar 

  • Cassel D. and Selinger Z. (1976) Catecholamine-stimulated GTPase activity in turkey erthyrocyte membranes. Biochim. Biophys. Acta 452,538–551.

    PubMed  CAS  Google Scholar 

  • Cerione R. A,, Kroll S., Rajaram R., Unson C, Goldsmith P., and Spiegel A. M. (1988) An antibody directed against the carboxyl terminal decapeptide of the a subunit of the retinal GTP-binding protein, transducin. Effects on transducin function. J. Biol. Chem. 263,9345–9352.

    PubMed  CAS  Google Scholar 

  • Chang, P.-H. and Bourne H. R. (1987) Dexamethasone increases adenylyl cyclase activity and expression of the a subunit of Gs in GH3 cells. Endocrinology 121, 1711–1715.

    Article  PubMed  CAS  Google Scholar 

  • Chang, P.-H. and Bourne H. R. (1989) Cholera toxin induces CAMP-independent degradation of G,. J. Biol. Chem. 264,5352–5357.

    PubMed  CAS  Google Scholar 

  • Codina J., Olate J., Abramowitz J., Mattera R., Cook R. G., and Birnbaumer L. (1988) αi3 cDNA encodes the α subunit of Gk, the stimulatory G-protein of receptor-regulated K+channels. J. Biol. Chem. 263,6746–6750.

    PubMed  CAS  Google Scholar 

  • Codina J,, Yatani A., Grenet D., Brown A. M., and Birnbaumer L. (1987) The a subunit of the GTP binding protein Gk opens atria1 potassium channels. Science 236442–445.

    Article  PubMed  CAS  Google Scholar 

  • Costa T. and Herz A. (1989) Antagonists with negative intrinsic activity at δ opioid receptors coupled to GTP-binding proteins. Proc. NutI. Acud. Sci. USA 86ÖÖ,7321–7325.

    Article  CAS  Google Scholar 

  • Costa T., Lang J., Gless C., and Herz A. (1990) Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: Specific regulation by antagonists and sodium ions. Mol. Fharmacol. 37,383–394.

    CAS  Google Scholar 

  • Dolphin A. C. (1990) G-proteins and the regulation of ion channels, in G-Proteins as Mediators of Cellular Signalling Processes (Houslay M. D. and Milligan G., eds.), Wiley and Sons, Chichester, pp.125–

    Google Scholar 

  • Eide B., Gierschik P., Milligan G, Mullaney I., Unson C., Goldsmith P., and Spiegel A. (1987) GTP-binding proteins in brain and neutrophil are tethered to the plasma membrane via their amino termini. Biochem. Biophys. Res. Commun. 148,1398–1405.

    Article  PubMed  CAS  Google Scholar 

  • Ewald D. A., Sternweis P. C., and Miller R. J. (1988) Guanine nucleotidebinding protein Go-induced coupling of neumpeptideγ receptors to Ca2+ channels in sensory neurons. Proc, Natl. Acad. Sci. USA 85,3633–3637.

    Article  CAS  Google Scholar 

  • Florio V. A. and Sternweis P. C. (1985) Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260,3477–3483.

    PubMed  CAS  Google Scholar 

  • Freissmuth M. and Gilman A. G. (1989) Mutations of G,a designed to alter the reactivity of the protein with bacterial toxins. Substitutions at Arg187 result in loss of GTPase activity. J. Biol. Chem. 264,21907–21914.

    PubMed  CAS  Google Scholar 

  • Gabrion J., Brabet Ph., Dao B. N. T, Homberger V., Dumuis A., Sebben M., Rouot B., and Bockaert J. (1989) Ultrastructural localization of the GTP-binding protein G, in neurons. Cell. Signalling 1,107–123.

    Article  PubMed  CAS  Google Scholar 

  • Gao B., Gilman A. G., and Robishaw J. D. (1987) A second form of the β-subunit of signal transducing G-proteins. Proc. Nutl. Acad. Sci. USA 84, 6122–6125.

    Article  CAS  Google Scholar 

  • Gautam N, Baetscher M., Aebersold R., and Simon M. I. (1989) A G-protein gamma subunit shares homology with ras proteins. Science 244,971–974.

    Article  PubMed  CAS  Google Scholar 

  • Gawler D., Milligan G., Spiegel A. M., Unson C. G, and Houslay M. D. (1987) Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes. Nature 327,229–232.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P. and Jakobs, K.-H. (1987) Receptor mediated ADP-ribosylation of a phospholipase C-stimulating G-protein. FEBS Lett.224,219–223.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P., Milligan G., Pines M., Goldsmith P., Codina J., Klee W., and Spiegel A. (1986) Use of specific antibodies to quantitate the guanine nucleotide binding protein Go in brain. Proc. Nutl. Acad. Sci. USA 83, 2258–2262.

    Article  CAS  Google Scholar 

  • Gierschik P., Sidiropoulos, D., and Jakobs, K.-H. (1989) Two distinct G-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J. Biol. Chew. 264,21470–21473.

    CAS  Google Scholar 

  • Gilman A. G. (1987) G-proteins: Transducers of receptor generated signals. Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Glomset J, A., Gelb M. H., and Farnsworth C. C. (1990) Prenyl proteins in eukaryotic cells: A new type of membrane anchor. T.I.B.S. 15,139–142.

    CAS  Google Scholar 

  • Goh J. W. and Pennefather P. S. (1989) A pertussis toxin-sensitive G-protein in hippocampal long-term potentiation. Science 244,980–983.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith P., Backlund P. S. Jr., Rossiter K., Carter A., Milligan G., Unson C. G., and Spiegel A. (1988a) Purification of heterotrimeric GTP-binding proteins from brain: Identification of a novel form of Go. Biochemistry, 27,7085–7090.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith P., Gierschik P., Milligan G., Unson C. G, Vinitsky R., Malech H. L., and Spiegel A. M. (1987) Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J Biol. Chem. 262,14683–14688.

    PubMed  CAS  Google Scholar 

  • Goldsmith P., Rossiter K., Carter A., Simonds W., Unson C. G, Vinitsky R., and Spiegel A. M. (1988b) Identification of the GTP-binding protein encoded by G13 complementary DNA. J. Biol. Chem. 263,6476–6479.

    PubMed  CAS  Google Scholar 

  • Grand R. J, A. (1989) Acylation of viral and eukaryotic proteins. Biochem. J 258, 625–638.

    PubMed  CAS  Google Scholar 

  • Graziano M. P. and Gilman A. G. (1989) Synthesis in Escherichia coli of GTPase-deficient mutants of Gsα. J. Biol. Gem. 264,15475–15482

    CAS  Google Scholar 

  • Green A., Johnson J. L., and Milligan G. (1990) Down-regulation of Gi, subtypes by prolonged incubation of adipocytes with an Al adenosine receptor agonist. J. Biol. Chem. 265,5206–5210.

    PubMed  CAS  Google Scholar 

  • Hamm H. E, Deretic D., Arendt A., Hargrave P. A., Koenig B., and Hofmann K. P. (1988) Site of G-protein binding to rhodopsin mapped with synthetic peptides to the a subunit. Science 241, 832–834.

    Article  PubMed  CAS  Google Scholar 

  • Hancock J. P., Marshall C. J., McKay I. A., Gardner S., Houslay M. D., Hall A., and Wakelam M. J. O. (1988) Mutant but not normal p21 ras elevates inositol phospholipid breakdown in two different cell systems. Oncogene 3,187–193.

    PubMed  CAS  Google Scholar 

  • Harris B. A., Robishaw J. D., Mumby S. M., and Gilman A. G. (1985) Science 229,1274–1277.

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick R., Hammond C., Paupardin-Tritsch D., Homberger V., Rouot B., Bockaert J., and Gerschenfeld H. M. (1988) An α40 subunit of a GTP-binding protein immunologically related to Go mediates a dopamine-induced decrease of Ca2+current in snail neurons. Neuron 1,27–32.

    Article  PubMed  CAS  Google Scholar 

  • Helper J. R. and Harden T. K. (1986) Guanine nucleotide-dependent pertussis toxin insensitive stimulation of inositol phosphate formation by carbachol in a membrane preparation from human astrocytoma cells. Biochem. J. 239,141–146.

    Google Scholar 

  • Hescheler J., Rosenthal W., Trautwein W., and Schultz G. (1987) The GTP-binding protein, Go regulates neuronal calcium channels. Nature 325, 445–447.

    Article  PubMed  CAS  Google Scholar 

  • Houslay M. D, Bojanic D., Gawler D, O’Hagan S., and Wilson A. (1986) Thrombin, unlike vasopressin, appears to stimulate two distinct guanine nucleotide regulatory proteins in human platelets. Biochem. J 238, 109–113.

    PubMed  CAS  Google Scholar 

  • Hsia J. A., Moss J., Hewlitt E. L., and Vaughan M. (1984) ADP-ribosylation of adenylyl cyclase by pertussis toxin. Effects on inhibitory agonist binding. J Biol. Chem. 259,1086–1090.

    PubMed  CAS  Google Scholar 

  • Huff R. M. and Neer E. J. (1986) Subunit interactions of native and ADP-ribosylated α39 and α41, two guanine nucleotide-binding proteins from bovine cerebral cortex. J. Biol. Chem. 261,1105–1110.

    PubMed  CAS  Google Scholar 

  • Iiri T., Tohkin M., Morishima N., Ohoka Y., Ui M., and Katada T. (1989) Chemotactic peptide receptor-supported ADP-ribosylation of a pertussis toxin substrate GTP-binding protein by cholera toxin in neutrophil-typeHL-60 cells. J. Biol. Chem. 264,21394–21400.

    PubMed  CAS  Google Scholar 

  • Jones D. T. and Reed R. R. (1987) Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithe1ium. J Biol. Chem. 262,14241–14249.

    PubMed  CAS  Google Scholar 

  • Jones T. L. Z, Simonds W. F., Merendino J. J., Brann M. R., and Spiegel A. M. (1990) Myristoylation of an inhibitory GTP-binding protein a subunit isÖ essential for its membrane attachment. Proc. Nutl. Acud. Sci. USA 87,568–572.

    Article  CAS  Google Scholar 

  • Kaziro Y. (1990) Molecular biology of G-protein, in G-Proteins as Mediators of CelZuZar Signalling Processes (Houslay M. D. and Milligan G., eds.) Wiley and Sons, Chichester, pp. 47–

    Google Scholar 

  • Kobayashi I., Shibasaki H., Takahashi K., Kikkawa S., Ui M., and Katada T. (1989) Purification of GTP-binding proteins from bovine brain membranes. Identification of heterogeneity of the α subunit of Go proteins. FEBS Lett. 257,177–180.

    Article  PubMed  CAS  Google Scholar 

  • Koski G. and Klee W. A. (1981) Opiates inhibit adenylyl cyclase by stimulating GTP hydrolysis. Proc. Nutl. Acad. Sci. USA 78,4185–4189.

    Article  CAS  Google Scholar 

  • Kurachi Y., Nakajima T., and Sugimoto T. (1986) Role of intracellular Mg2+ in the activation of muscarinic K+ channels in cardiac atrial cell membrane. Pflugers Arch. 407,572–574.

    Article  PubMed  CAS  Google Scholar 

  • Kurose H., Katada T., Amano, T., and Ui M. (1983) Specific uncoupling by islet activating protein, pertussis toxin, of negative signal transduction via α-adrenergic, cholinergic and opiate receptors in neuroblastoma x glioma hybrid cells. J. Biol. Chem. 258,4870–4875.

    PubMed  CAS  Google Scholar 

  • Landis C. A., Masters S. B, Spada A., Pace A. M., Bourne H. R., and Vallar L. (1989) GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340, 692–696.

    Article  PubMed  CAS  Google Scholar 

  • Lochrie M. A. and Simon M. I. (1988) G-protein multiplicity in eukaryotic signal transduction systems. Biochemistry 27, 4958–4965.

    Article  Google Scholar 

  • Macleod K. G. and Milligan G. (1990) Bipahasic regulation of adenylyl cyclase by cholera toxin in neuroblastoma x glioma hybrid cells is due to the activation and subsequent loss of the a subunit of the stimulatory GTP binding protein (Gs) Cell. Signalling 2, 139–151.

    Article  PubMed  CAS  Google Scholar 

  • Maguire M. E., Van Arsdale P. M., and Gilman A. G. (1976) An agonist specific effect of guanine nucleotides on binding to the β adrenergic receptor. Mol. Pharmacol, 12,335–339.

    PubMed  CAS  Google Scholar 

  • Martin T. P.J., Lucas D. O., Bajjalieh S. M., and Kowalchyk J. A. (1986) Thyrotropin-releasing hormone activates a Ca2+-dependent polyphosphoinositide phosphodiesterase in permeable GH3 cells. GTPγS potentiation by a cholera and pertussis toxin-insensitive mechanism. J. Biol. Chem. 261,2918–2927.

    PubMed  CAS  Google Scholar 

  • Masters S. B., Miller R. T., Chi, M.-H., Chang, F.-H., Beiderman B., Lopez N. G., and Bourne H. R. (1989) Mutations in the GTP-binding site of Gsα alter stimulation of adenylyl cyclase. J. Biol. Chem. 264,15467–15474.

    PubMed  CAS  Google Scholar 

  • Masters S. B., Stroud R. M., and Bourne H. R. (1986) Family of G-protein α chains: Amphipathic analysis and predicted structure of functional domains. Protein Eng. 1,47–54.

    Article  PubMed  CAS  Google Scholar 

  • Masters S. B., Sullivan K. A., Miller R. T., Beiderman B., Lopez N. G., Ramachandran J., and Bourne H. R. (1988) Carboxyl terminal domain of Gsα specifies coupling of receptors to stimulation of adenylyl cyclase. Science 241,448–451.

    Article  PubMed  CAS  Google Scholar 

  • McArdle H., Mullaney I., Magee A., Unson C., and Milligan G. (1988) GTP analogues cause release of the alpha subunit of the GTP binding protein, Go from the plasma membrane of NGlOB-15 cells. Biochem. Biophys. Res. Commun. 152,243–251.

    Article  PubMed  CAS  Google Scholar 

  • McFadzean I., Mullaney I., Brown D. A., and Milligan G. (1989) Antibodies to the GTP binding protein, Go, antagonize noradrenaline-induced calcium current inhibition in NGlOB-15 hybrid cells. Neuron 3,177–182.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie F. R, Kelly E. C. H., Unson C. G., Spiegel A. M., and Milligan G. (1988) Antibodies which recognise the C-terminus of the inhibitory guanine nudeotide binding protein (Gi) demonstrate that opioid peptides and foetal calf serum stimulate the GTPase activity of two separate pertussis toxin substrates. Biochem. J. 249,653–659.

    PubMed  CAS  Google Scholar 

  • McKenzie F. R. and Milligan G. (1989) The use of specific antisera to locate functional domains of guanine nucleotide binding proteins, in Receptors, Membrane Transport and Signal Transduction. NATO ASI Series H: Cell Biology, vol. 29 (EvangelopoulosA. E., ChangeuxJ. P., PackerL., SotiroudisT. G., and WirtzK. W. A., eds.), Springer-Verlag,Berlin, pp. 65–

    Google Scholar 

  • McKenzie F. R. and Milligan G. (1990) δ opioid-receptor mediated inhibition of adenylyl cyclase is transduced specifically by the guanine nucleotide binding protein Gi,2. Biochem. J. 267,391–398.

    PubMed  CAS  Google Scholar 

  • Milligan G. (1988) Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem. J. 255,1–13.

    PubMed  CAS  Google Scholar 

  • Milligan G. (1989) Foetal calf serum enhances cholera toxin-catalysed ADP-ribosylation of the pertussis toxin-sensitive guanine nucleotide binding protein, Gi2, in rat ghoma C6BUl cells. Cell. Signalling 1, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G. (1990a) Immunological probes and the identification of guanine nucleotide binding proteins, in G-Proteins as Mediators of Cellular Signalling Processes (Houslay M. D. and Milligan G., eds.), Wiley and Sons, Chichester, pp.31–

    Google Scholar 

  • MiIIigan G. (1990b) Tissue distribution and subcellular location of guanine nucleotide binding proteins: Implications for cellular signaIling. Cell. Signalling 1,411–419.

    Google Scholar 

  • Milligan G., Gierschik P., Spiegel A. M., and KIee W. A. (1986) The GTP binding regulatory proteins of neuroblastoma x glioma, NG108-15, and glioma, C6, cells. Immunochemical evidence of a pertussis toxin substrate that is neither Ni nor No. FEBS Lett. 195,225–230.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G., Gierschik P., Unson C. G., and Spiegel A. M. (1987b) The use of specific antisera to study the developmental regulation of guanine nucleotide binding proteins. Protides Biol. Fluids 35,415–418.

    CAS  Google Scholar 

  • Milligan G. and KIee W. A. (1985) The inhibitory guanine nucleotide binding protein (Ni) purified from bovine brain is a high affinity GTPase. J, Biol. Chem. 260,2057–2063.

    CAS  Google Scholar 

  • Milligan G. McKenzie F. R. (1988) Opioid peptides promote cholera toxin-catalysed ADP-ribosylation of the inhibitory guanine nucleotide binding protein (Gi) in membranes of neuroblastoma x glioma hybrid cells. Biochem. J. 252,369–373.

    PubMed  CAS  Google Scholar 

  • Milligan G., Mitchell F. M., Mullaney I., McClue S. J., and McKenzie, F. R. (1990) The role and specificity of guanine nucleotide binding proteins in receptor-effecter coupling, in Hormone Perception and Signal Transduction in Animals and Plants (Roberts J,, Venis M., and Kirk C., eds.), Society of Biologists, London (157–1

    Google Scholar 

  • Milligan G., Streaty R. A., Gierschik P., Spiegel A. M., and KIee W. A. (1987a) Development of opiate receptors and GTP-binding regulatory proteins in neonatal rat brain. J. Biol. Chem. 262,8626–8630.

    PubMed  CAS  Google Scholar 

  • Milligan G., Unson C. G. and Wakelam M. J. O. (1989) Cholera toxin treatment produces down-regulation of the a subunit of the stimulatory guanine nucleotide binding protein (Gs) Biochem. J. 262, 643–6

    PubMed  CAS  Google Scholar 

  • Mitchell P. M., Griffiths S. L., Saggerson E. D., Houslay M. D., Knowler J. T., and Milligan G. (1989) Guanine nucleotide binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gil, Gi2 and Gi3. Biochem. J. 262,403–408.

    PubMed  CAS  Google Scholar 

  • Mullaney I. and Milhgan G. (1989) Elevated levels of the guanine nucleotide binding protein, Go are associated with differentiation of neuroblastoma x glioma hybrid cells. FEBS,Lett. 244,113–118.

    Article  CAS  Google Scholar 

  • Mullaney I. and Milligan G. (1990a) Identification and analysis of two distinct isoforms of the guanine nucleotide-binding protein Go in NG108-15 cells. Biochem. Soc. Trans. l8,396–399.

    Google Scholar 

  • Mullaney I. and Miliigan G. (199Ob) Identification of two distinct isoforms of the guanine nucleotide binding protein, Go in neuroblastoma x glioma hybrid cells. Independent regulation during cyclic AMP-induced differentiation. J. Neurochem. 55,1890–1898.

    Google Scholar 

  • Murphy P. M., Eide B., Goldsmith P., Brann M., Gierschik P., Spiegel A., and Malech H. L. (1987) Detection of multiple forms of Giα in I-IL 60 cells. FEBS Lett. 221,81–86.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T. and Ui M. (1985) Simultaneous inhibitons of inositol phospholipid breakdown, arachidonic acid release and histamine secretion in mast cells by islet activating protein, pertussis toxin. A possible involvement of the toxin-specific substrate in the Ca2+ mobilizing receptor-mediated biosignaling system. J. Biol. Chem. 260,3584–3593.

    PubMed  CAS  Google Scholar 

  • Neer E. J, and Clapham D. E. (1988) Roles of G protein subunits in transmembrane signalling. Nature 333,129–134.

    Article  PubMed  CAS  Google Scholar 

  • Neer E. J., Lok J. M., and Wolf L. G. (1984) Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J, Biol. Chem. 259,14222–14229.

    CAS  Google Scholar 

  • Neer E. J., Pulsifer, L., and Wolf L. G. (1988) The amino terminus of G protein a subunits is required for interaction with β/γ. J. Biol. Chem. 263, 8996–9000.

    PubMed  CAS  Google Scholar 

  • Nicoll R. A. (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241,545–551.

    Article  PubMed  CAS  Google Scholar 

  • Offermans S., Schafer R., Hoffman B., Bombien E., Spicher K., Hinsch, K.-D., Schultz G., and Rosenthal W. (1990) Agonist-sensitive binding of a photoreactive GTP analog to a G-protein a subunit in membranes of HL-60 cells. FEBS Lett. 260,14–18.

    Article  PubMed  CAS  Google Scholar 

  • Ohta H., Okajima F., and Ui M. (1985) Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem. 260,15771–15780.

    PubMed  CAS  Google Scholar 

  • Pines M., Gierschik P., Milligan G., Klee, W., and Spiegel A. (1985) Antibodies against the carboxyl-terminal 5-kDa peptide of the a subunit of transducin crossread with the 40-kDa but not the 39-kDa guanine nucleotide binding protein from brain. Pruc. Nutl. Acud. Sci. USA 82, 4095–4099.

    Article  CAS  Google Scholar 

  • Quan F., Wolfgang W. J., and Forte M. A. (1989) The Drosophila gene coding for the a subunit of a stimulatory G-protein is preferentially expressed in the nervous system. Proc. Natl. Acud. Sci. USA 86,4321–4325.

    Article  CAS  Google Scholar 

  • Rodbell M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284,17–22.

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M., Krans H. M. J., Pohl S., and Birnbaumer L. (1971) The glucacon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of 125I-glucagon. J. Biol. Chem. 246,1872–1876.

    PubMed  CAS  Google Scholar 

  • Rosenthal W, Hescheler J., Trautwein, W., and Schultz G. (1988) Control of voltage-dependent Ca2+channels by G-protein-coupled receptors. FASEB J. 2,2784–2790.

    PubMed  CAS  Google Scholar 

  • Saito N., Guitart X., Hayward M., Tallman J. F., Duman R. S., and Nestler E. J. (1989) Corticosterone differentially regulates the expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc. Nutl. Acud. Sci. USA 86,3906–3910.

    Article  CAS  Google Scholar 

  • Sasaki K. and Sato M. (1987) A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature 325,259–262.

    Article  PubMed  CAS  Google Scholar 

  • Senogles S. E., Spiegel A. M., Padrell E., Iyengar R., and Caron M. G. (1990) Specificity of receptor-G-protein interactions. Discrimination of G1 subtypes by the D2 dopamine receptor in a reconstituted system. J, Biol. Chem. 265,4507–4514.

    CAS  Google Scholar 

  • Spiegel A. M. (1990) Structure and identification of G-proteins: Isolation and purification, in G-Proteins us Mediators of Cellular Signalling Processes (Houslay M. D. and Milligan G., eds.), Wiley and Sons, Chichester, pp.15–30.

    Google Scholar 

  • Sternweis P. C. and Robishaw J. D. (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259,13806–13813.

    PubMed  CAS  Google Scholar 

  • Strassheim D., Milligan G., and Houslay M. D. (1990) Diabetes abolishes the GTP-dependent, but not the receptor-dependent inhibitory function of the inhibitory guanine-nucleotide-binding regulatory protein (Gi) on adipocyte adenylyl cyclase function. Biochem. J. 266, 521–526.

    PubMed  CAS  Google Scholar 

  • Sullivan K. A., Miller R. T., Masters S. B., Beiderman B., Heideman W., and Bourne H. R. (1987) Identification of receptor contact site involved in receptor-G-protein coupling. Nature 330,758,759.

    Article  Google Scholar 

  • Thalmann R. H. (1988) Evidence that guanosine triphosphate (GTP) binding proteins contol a synaptic response in brain. Effect of pertussis toxin and GTPγS on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neurosci. 8,4589–4602.

    PubMed  CAS  Google Scholar 

  • Ueda H., Yoshihara Y., Misawa H., Pukushima N., Katada T., Ui M., Takagi H., and Satoh M. (1989) The kyotorphin (tyrosine-arglnine) receptor and a selective reconstitution with purified Gi measured with GTPase and phospholipase C assays. J. Bid. Chem. 264,3732–3741.

    CAS  Google Scholar 

  • VanDongen A. J. M., Codina J., Olate J., Mattera R, Joho R., Birnbaumer L., and Brown A. M. (1988) Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science 242, 1433–1436.

    Article  Google Scholar 

  • Wang N., Yan K., and Rasenick M. M. (1990) Tubulin binds specifically to the signal-transducing proteins, Gsα and Gi1α. J. Bid. Gem. 265, 1239–1242.

    CAS  Google Scholar 

  • Weinstein L. S., Spiegel A. M., and Carter A. D. (1988) Cloning and characterization of the human gene for the a subunit of Gi2, a GTP-binding signal transduction protein. FEBS Lett. 232,333–340.

    Article  PubMed  CAS  Google Scholar 

  • Worley P. F., Baraban J, M., Van Dop C., Neer E. J., and Snyder S. H. (1986) Go, a guanine nucleotide-binding protein: Immunohistochemical localization in rat brain resembles distribution of second messnger systems. Proc. Natl. Acad. Sci. USA 83,4561–4565.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A., Mattera R., Codina J., Graf R, Okabe K., Padrell E., Iyengar R., Brown A. M., and Birnbaumer L. (1988) The G-protein-gated atria1 K+ channel is stimulated by three distinct G,α subunits. Nature 336, 680–682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press Inc.

About this protocol

Cite this protocol

Milligan, G. (1992). Identification and Analysis of Function of Heterotrimeric Guanine Nucleotide-Binding Proteins Expressed in Neural Tissue. In: Boulton, A.A., Baker, G.B., Taylor, C.W. (eds) Intracellular Messengers. Neuromethods, vol 20. Humana Press. https://doi.org/10.1385/0-89603-207-8:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-207-8:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-207-1

  • Online ISBN: 978-1-59259-625-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics