Skip to main content

Analysis of Insulin and Insulin-Like Growth Factor-I Receptors in Neural Tissues

  • Protocol
Protocols in Molecular Neurobiology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 13))

  • 1722 Accesses

Abstract

A variety of biochemical and physiological studies in recent years have made it clear that the brain possesses specific receptors and puta- tive signal transduction pathways for insulin and the insulin-like growth factors (IGF-I and IGF-II). These observations have challenged tradi- tional ideas concerning the physiological role of these peptides in the CNS, and have compelled us and others to consider that they are important regulators of metabolism and growth and development in the CNS (reviewed in 1). A combination of the techniques used for culturing neuralderived cells and those involved in studying insulin and IGF-I receptors on peripheral nonneural tissue has provided a major stimulus for these studies, the results of which define insulin and the IGFs as neuropeptides. The purpose of this chapter is to present these techniques together in a comprehensive manner so as to pro- vide the reader with an overview of how it is possible to study insulin and the IGF-I receptors in nervous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamo, M., Raizada, M. K., and LeRoith, D. (1989) Insulin and insulin-like growth factor receptors m the nervous system. Mol. Neurobiol. 3, 71–100.

    Article  PubMed  CAS  Google Scholar 

  2. Havrankova, J., Roth, J., and Brownstem, M. J. (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272,827–829.

    Article  PubMed  CAS  Google Scholar 

  3. Lowe, W. L. Jr., Boyd, F. T., Clarke, D. W., Raizada, M. K., Hart, C., and LeRolth, D. (1986) Development of brain-insulin receptors: structural and functional studies of Insulin receptors from whole brain and primary cell cultures. Endocrinology 119, 25–35.

    Article  PubMed  CAS  Google Scholar 

  4. Shemer, J., Ralzada, M. K., Masters, B. A., Ota, A., and LeRoith, D. (1987) Insulin-like growth factor receptors in neuronal and glial cells. Characterization and biological effects in primary culture. J. Biol. Chem. 262,7693–7699.

    PubMed  CAS  Google Scholar 

  5. Ota, A., Wilson, G. L., Spilberg, O., Pruss, R., and LeRoith, D. (1988) Functional insulin-like growth factor I receptors are expressed by neural-derived continuous cell lines. Endocrinology 122,145–152.

    Article  PubMed  CAS  Google Scholar 

  6. Ota, A., Shemer, J., Pruss, R. M., Lowe, W. L., Jr., and LeRolth, D. (1988) Characterization of the altered oligosaccharide composition of the insulin receptors on neural derived cells. Brain Res. 43, 1–11.

    Article  Google Scholar 

  7. Raizada, M. K., Shemer, J., Judkms, J, H., Clarke, D. W., Masters, B. A., and LeRolth, D. (1988) Insulin receptors in the brain: structural and physiological characterization. Neurochem. Res. 13, 297–303.

    Article  PubMed  CAS  Google Scholar 

  8. Masters, B. A., Shemer, J., Judkins, J. H., Clarke, D. W., LeRolth, D., and Ralzada, M. K. (1987) Insulin receptors and insulin action in dissociated brain cells.Brain Res. 417, 247–256.

    Article  PubMed  CAS  Google Scholar 

  9. Lowry, O. H., Rosebrough, N. J,, Farr, A. L., and Randall, R. J. (1951) Protein measurement with Fohn-Phenol reagent.J. Biol. Chem. 93, 265–275.

    Google Scholar 

  10. Hedo, J. A., Harrison, L. C., and Roth, J. (1981) Binding of insulin receptors to lectins: evidence for a common carbohydrate determinants on several membrane receptors. Biochemistry 20, 3385–3390.

    Article  PubMed  CAS  Google Scholar 

  11. Harrison, L. C. and Itin, A. (1980) Purification of the insulin receptors from human placenta by chromatography on immobilized wheat germ lectin and receptor antibody. J. Biol. Chem. 255, 12066–12072.

    PubMed  CAS  Google Scholar 

  12. Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M. C., Roth, R. A., and Rutter, W. J, (1987) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329, 301–307.

    Article  PubMed  CAS  Google Scholar 

  13. Pilch, P. F. and Czech, M. P. (1979) Interaction of cross-linking reagents with the insulin effector system of isolated fat cells. Covalent linkage of 1251-insulin to a plasma membrane receptor protein of 140,000 daltons. J. Biol. Chem. 254, 3375–3381.

    PubMed  CAS  Google Scholar 

  14. Tarenuno, A. L., Plummer, T. H., Jr., and Maley, F. J. (1974) The release of intact oligosaccharides from specific glycoproteins by endo-B-Nacetyl glucoseaminidase H.J. Biol. Chem. 249, 818–824.

    PubMed  CAS  Google Scholar 

  15. Elder, J. H. and Alexander, S. (1982) Endo-B-N-acetylglucoseaminidase F: endoglycosidase from Falvobacterium meningosepticum that cleaves both high mannose and complex glycoproteins. Proc. Natl. Acad. Sci. USA 79, 4540–4544.

    Article  PubMed  CAS  Google Scholar 

  16. Yip, C. C., Moule, M. L., and Yeung, C. W. T. (1980) Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling. Biochem. Biophys. Res. Commun. 96, 1671–1678.

    Article  PubMed  CAS  Google Scholar 

  17. Heidenreich, K. A., Zahniser, N. R., Berhanu, P., Brandenburg, D., and Olefsky, J. M. (1983) Structural differences between insulin receptors in the brain and peripheral target tissue. J. Biol. Chem. 258, 8527–8530.

    PubMed  CAS  Google Scholar 

  18. Hendricks, S. A., Agardh, C.-D., Taylor, S. I., and Roth, J. (1984) Unique features of the insulin receptors in rat brain. J. Neurochem. 43, 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  19. Heidenreich, K. A., Freidenberg, G. R., Figlevicz, D. P., and Gilmore, P. R. (1986) Evidence for a subtype of insulin-like growth factor I receptor in brain. Regul. Peptides 15, 301–310.

    Article  CAS  Google Scholar 

  20. Hedo, J, A., Kahn, C. R., Hayashi, M., Yamada, K. M., and Kasuga, M. (1983) Biosynthesis and glycosylanon of the insulin receptor. J. Biol. Chem. 258, 10020–10026.

    PubMed  CAS  Google Scholar 

  21. Rosenzweig, S. A., Madison, L. D., and Jamieson, J. D. (1984) Analysis of cholecystokinin-binding proteins using endo-B-N-acetylglucoseaminidase F.J. Cell. Biol. 99, 1110–1116.

    Article  PubMed  CAS  Google Scholar 

  22. Lowe, W. L., Jr. and LeRoith, D. (1986) Insulin receptors from guinea pig liver and brain: structural and functional studies. Endocrinology 118, 1669–1677.

    Article  PubMed  CAS  Google Scholar 

  23. Oligosaccharide heterogemety of insulin receptors. Comparison of N-linked glycosylahon of insulin receptors in adipocytes and brain. Endocrinology 118, 1835–1842.

    Article  PubMed  CAS  Google Scholar 

  24. McElduff, A., Poronnik, P., Baxter, R. C., and Williams, P. (1988) A comparison of the insulin and insulin-like growth factor I receptors from rat brain and liver.Endocrinology 122, 1933–1939.

    Article  PubMed  CAS  Google Scholar 

  25. Zick, Y. (1989) The insulin receptor: structure and function. Crit. Rev. Biochem. Molec. Biol. 24, 217–269.

    Article  CAS  Google Scholar 

  26. Ota, A., Wilson, G. L., and LeRoith, D. (1989b) Insulin-like growth factor I receptors on mouse neuroblastoma cells. Two beta-subunits are derived from differences in glycosylation. Eur. J. Biochem. 174, 521–530.

    Article  Google Scholar 

  27. Rees-Jones, R. W., Hendricks, S. A., Quarum, M., and Roth, J. (1984) The insulin receptors of rat brain are coupled to tyrosine kinase activity. J. Biol. Chem. 174, 521–530.

    Google Scholar 

  28. Simon, J. and LeRoith, D. (1986) Insulin receptors of chicken liver and brain. Characterization of alpha and beta subunit properties. Eur. J. Biochem. 158, 125–132.

    Article  Google Scholar 

  29. Simon, J., Rosebrough, R. W., McMurtry, J. P., Steele, N. C., Roth, J., Adamo, M., and LeRonh, D. (1986). Fasting and refeeding alter the insulin receptor tyrosine kinase in chicken liver but fail to affect brain insulin receptors. J. Biol. Chem. 261, 17081–17088.

    Google Scholar 

  30. White, M. F., Maron, R., and Kahn, C. R. (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr185,000 protein in intact cells. Nature 318, 183–185.

    Article  PubMed  CAS  Google Scholar 

  31. Kadowaki, T., Koyasu, S., Nishida, E., Tobe, K., Izumi, T., Takuku, F., Sakai, H., Yahara, I., and Kasuga, M. (1987) Tyrosine phosphorylation of common and specific sets of cellular proteins rapidly induced by insulin, insulin-like growth factor I and epidermal growth factor in an intact cell. J. Biol. Chem. 262, 7342–7350.

    PubMed  CAS  Google Scholar 

  32. Shemer, J., Adamo, M., Wilson, G. L., Heffez, D., Zick, Y., and LeRoith, D., (1987) Insulin and insulin-like growth factor-I stimulate a common endogenous phosphoprotein substrate (pp 185) in intact neuroblastoma cells. J. Biol. Chem. 262, 15476–15482.

    PubMed  CAS  Google Scholar 

  33. Shemer, J., Adamo, M., Raizada, M. K, Heffez, D., Zick, Y., and LeRoith, D. (1989) Insulin and IGF-I stimulate phosphotylahon of their respective receptors in intact neuronal and glial cells in primary cu1ture. J. Mol. Neurosci. 1, 3–8.

    Article  PubMed  CAS  Google Scholar 

  34. Cooper, J. A., Sefton, B. M., and Hunter, T. (1983) Detection and quantifcation of phosphotyrosine in proteins. Meth. Enzymol. 99, 387–402.

    Article  PubMed  CAS  Google Scholar 

  35. Cleveland, D. W., Fischer, S. G., Kuschner, M. W., and Laemmli, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol. Chem. 252, 1102–1106.

    Google Scholar 

  36. Lasky, S. R., Jacobs, B. L., and Samuel, C. E. (1982) Mechanism of interferon action. Characterization of sites of phosphotylation on the interferon-induced phosphoprotem P1. J Biol. Chem. 257, 11,087–11,093.

    Google Scholar 

  37. Ramada, M. K. (1983) Insulin immunoreactivity in neurons of primary cultures from rat brain. Exp. Cell. Res. 143, 351–357.

    Article  PubMed  CAS  Google Scholar 

  38. Sumners, C., Phillips, M. I., and Raizada, M. K. (1983) Rat brain cells in primary culture: visualization and measurement of catecholamines. Brain Res. 264,267–275.

    Article  PubMed  CAS  Google Scholar 

  39. Clarke, D. W., Boyd, F. T., Kappy, M. S., and Raizada, M. K. (1984) Insulin binds and stimulates 2-deoxy-D-glycose uptake in cultured glial cells from rat brain. J. Biol Chem. 259, 11,672–l1,675.

    CAS  Google Scholar 

  40. Boyd, F. T., Clarke, D. W., Muther, T. F., and Raizada, M. K. (1985) Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J. Biol Chem. 260,15,88O–15,884.

    CAS  Google Scholar 

  41. Raizada, M. K., Phillips, M. I., Crews, F. T., and Sumners, C. (1987) Distinct angiotensin II receptors in primary culture of glial cells from rat brain. Proc. Natl. Acad. Sci. USA 84,4655–4659.

    Article  PubMed  CAS  Google Scholar 

  42. Sumners, C. and Raizada, M. K. (1986) Angiotensin II stimulates norepinephrine uptake in hypothalamic/brain stem neuronal cultures. Am. J. Physiol. 250, C236–C244.

    PubMed  CAS  Google Scholar 

  43. Raizada, M. K., Muther, T. F., and Sumners, C. (1984) Increased angiotensin II specific receptors in neuronal cultures of spontaneously hypertensive rat brain. Am.J Physiol. 247, C364–C372.

    PubMed  CAS  Google Scholar 

  44. Sumners, C., Muther, T. F., and Raizada, M. K. (1985) Altered norepinephrine uptake in neuronal cultures from spontaneously hypertensive rat brain. Am.J Physiol. 248, C488–C497.

    PubMed  CAS  Google Scholar 

  45. Feldstein, J. B., Gonzales, R. A., Baker, M. S. P., Sumners, C., Crews, F. T.,and Raizada, M. K. (1986) Decreased alpha-adrenergic receptor mediated inositide hydrolysis in neurons from hypertensive rat brain. Am. J. Phyiol. 251, C230–C237.

    PubMed  CAS  Google Scholar 

  46. Raizada, M. K. and Sumners, C. (1989) Lack of alpha-adrenergic receptors mediated down-regulation of Angiotensin II receptors in neuronal cultures of spontaneously hypertensive rat brain. Mol. Cell. Biochem. 91,111–115.

    Article  PubMed  CAS  Google Scholar 

  47. Roth, J. (1975) Methods for assessing immunological and biologic properties of iodinated peptide hormones. Methods Enzymol. 37,223–233.

    Article  PubMed  Google Scholar 

  48. Adamo, M., Simon, J., Rosebrough, R. W., McMurtry, J. P., Steele, N. C., and LeRoith, 0. (1987) Characterization of the chicken muscle insulin receptor. Gen. Camp. Endocrinol. 68, 456–465.

    Article  PubMed  CAS  Google Scholar 

  49. Gammeltoft, S., Haselbacher, G. K., Humbel, R. E., Fehlmann, M., and Van Obberghen, E. (1985) Two types of receptor for insulin-like growth factors in mammalian brain. EMBO J. 4,3407–3412.

    PubMed  CAS  Google Scholar 

  50. Scatchard, G. (1949) The attractions of protein for small molecules and ions. Ann. NY Acad. Sci. 51, 660–672.

    Article  CAS  Google Scholar 

  51. Lowe, W. L., Jr., Adamo, M., Werner, H., Roberts, C. T., Jr., and LeRoith, D. (1989) Regulation by fasting of rat insulin-like growth factor I and us receptor. Effects on gene expression and binding. J. Clin. Invest. 84,619–626.

    Article  PubMed  CAS  Google Scholar 

  52. Bradford, M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72,248–254.

    Article  PubMed  CAS  Google Scholar 

  53. Laemmli, U. K (1970) Cleavage of structural proteins during assembly of the head of bacteriphage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  54. Burgess, S. K., Jacobs, S., Cuatrecasas, P., and Sahyoun, N. (1987) Characterization of a neuronal subtype of insulin-like growth factor I receptor. J. Biol. Chem. 262, 1618–1622.

    PubMed  CAS  Google Scholar 

  55. McElduff, A., Watkinson, A., Hedo, J. A., and Gorden, P. (1986) Characterization of the N-linked high-mannose oligosaccharides of the insulin pro-receptor and mature insulin receptor subunits. Biochem. J. 239,679–683

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Adamo, M.L. et al. (1992). Analysis of Insulin and Insulin-Like Growth Factor-I Receptors in Neural Tissues. In: Longstaff, A., Revest, P. (eds) Protocols in Molecular Neurobiology. Methods in Molecular Biology™, vol 13. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-199-3:227

Download citation

  • DOI: https://doi.org/10.1385/0-89603-199-3:227

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-199-9

  • Online ISBN: 978-1-59259-500-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics