Advertisement

The Hippocampal-Lesion Model of Schizophrenia

  • Nestor A. Schmauk
  • Mabel Tyberg
Protocol
Part of the Neuromethods book series (NM, volume 18)

Abstract

Animals with hippocampal lesions are evaluated as models for schizophrenia according to the criteria of (McKinney and Bunney 1969): similarity of inducing conditions, similarity of behavioral states, similarity of underlying neurobiological mechanisms, and reversibility by usual pharmacological treatment. Hippocampal-lesioned animals seem to comply adequately with McKinney and Bunney’s criteria because (a) schizophrenia might be the consequence of hippocampal damage resulting from anoxia or of hippocampal structural abnormalities induced by viral infection during pregnancy; (b) animals with hippocampal lesions share many of the characteristics of schizophrenics in both cognitive and psychophysiological processes; (c) hippocampal dysfunction seems to be present in schizophrenia; and (d) the effects of hippocampal lesions might be reversed by neuroleptics. The model seems to be able to reproduce several of the cognitive and psychophysiological symptoms of the disorder, offering a good experimental tool for the analysis of its inducing conditions, impaired neurobiological mechanisms, and clinical treatment.

Keywords

Conditioned Stimulus Nucleus Accumbens Unconditioned Stimulus Schizophrenic Patient Latent Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Altshuler L. L., Conrad A., Kovelman J. A., and Scheibel A. (1987) Hippocampal pyramidal cell orientation in schizophrenia. Arch. Gen. Psych. 44, 1094–1098.Google Scholar
  2. Andreasen N.G, Ehrhardt J. G, Swayze V. W., Alliger R. J., Yuh W. T. C., Cohen G., and Ziebell S. (1990) Magnetic resonance imaging of the brain in schizophrenia. Arch. Gen. Psych. 47, 354I.Google Scholar
  3. Andreasen N., NasraIIah H. A., Dunn V., Olson S. C., Grove W. M., Ehrhardt J. G, Coffman J. A., and Crossett J. H. W. (1986) Structural abnormalities in the frontal system in schizophrenia. Arch. Gen. Psych. 43, 136–144.Google Scholar
  4. Bagshaw M. H. and Kimble D. P. (1972) Bimodal EDR orienting response characteristic of limbic lesioned monkeys: Correlates with schizophrenic patients. Annual Meeting, Society for Psychophysiological Research.Google Scholar
  5. Bagshaw M. H., Kimble D. P., and Pribram K. H. (1965) The GSR of monkeys during orientation and habituation and after ablation of amygdala, hippocampus, and inferotemporal cortex. Neuruysychologiu 3, 111–119.Google Scholar
  6. Bar P. R., Gispen W. H., and Isaacson R. L. (1980) Behavioral and regional sequelae of hippocampal destruction in the rat. PharmucoZ. Biochem. Behav. 14, 305–312.Google Scholar
  7. Baribeau-Braun J., and Picton T. W., and Gosselin J. (1983) Schizophrenia: A neurophysiological evaluation of abnormal information processing. Science 219, 874–876.PubMedGoogle Scholar
  8. Baruch I., Hemsley D., and Gray J. A. (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J. Nerv. Merit,Dis. 176, 598–606.Google Scholar
  9. Bauman E. and Murray D. J. (1968) Recognition versus recall in schizophrenia. Gun. J. Psychol. 22, 18–25.Google Scholar
  10. Bender L. and Schilder P. (1930) Unconditioned reactions to pain in schizophrenics. Amer. J. Psychiat 10, 365–384.Google Scholar
  11. Benes F. M and Bird E. D. (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch. Otolayng.— Head Neck Surg. 113, 608–616.Google Scholar
  12. Beninger R. J. (1983) The role of dopamine in locomotor activity and learning. Brain Res. Rev. 6, 173–196.Google Scholar
  13. Berger T. W. and Orr W. B. (1983) Hippocampectomy selectively disrupts discrimination reversal conditioning of the rabbit nictitating membrane response. Behav. Brain Res. 8, 49–68.PubMedGoogle Scholar
  14. Berstein A. (1987) Orienting response in schizophrenia, Where we have come and where we might go. Schizophr. Bull. 13, 623–641.Google Scholar
  15. Bleuler E. (1911/1950) Dementia Praecox or the Group of Schizoyhrenius (Translated by Zinkin E.) International Universities Press, New York.Google Scholar
  16. Bogerts B., Meertz E., and Schonfeld-Bausch R. (1985) Basal ganglia and limbic system pathology in schizophrenia. Arch. Gen. Psychiatry 42, 784–791.PubMedGoogle Scholar
  17. Bowers M. B. (1974) Central dopamine turnover in schizophrenic syndromes. Arch. Gen. Psychiatry 31, 50–54.PubMedGoogle Scholar
  18. Brown R, Colter N, Corsellis J. A. N, Crow T. J., Prith C. D., Jagoe R, Johnstone E. C., and Marsh L. (1986) Postmortem evidence of structural brain changes in schizophrenia. Arch. Gen. Psychiatry 43, 36–42.PubMedGoogle Scholar
  19. Brozoski T. J., Brown R. M., Roswold H. E., and Goldman P. S. (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of Rhesus monkey. Science 205, 929–932.PubMedGoogle Scholar
  20. Buchanan S. L. and Powell D. A. (1980) Divergences in Pavlovian conditioned heart rate and eyeblink responses produced by hippocampectomy in the rabbit (Oyctolugus Cuniculus). Behav. Neurd Biol. 30, 20–38.Google Scholar
  21. Bures J., Buresova O., and Huston J. (1976) Techniques and Basic Experiments for the Study of Bruin and Behavior. Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  22. Cameron, N. (1951) Perceptual organization and behavior pathology, in Perception: An Aypouch to Personality (Blake R. R. and Ramsey G. V., eds.) Ronald, New York, pp. 283–306.Google Scholar
  23. Carlsson A. (1978) Does dopamine have a role in schizophrenia? Biol. Psychiatry 13, 3–21.PubMedGoogle Scholar
  24. Carlton P. L. and Manowitz P. (1984) Dopamine and schizophrenia: An analysis of the theory. Neurosci. Biobehuv. Rev. 8, 137–151.Google Scholar
  25. Chapman L. J. (1958) Intrusion of associative responses into schizophrenic conceptual performance. J. Abnorm. Sot. Psychol. 56, 374–379.Google Scholar
  26. Conrad A. J. and Scheibel A. B. (1987) Schizophrenia and the hippocampus: The embryological hypothesis extended. Schizophr. Bd. 13, 567–577.Google Scholar
  27. Cools A. R. and Van Rossum J. M. (1980) Multiple receptors for brain dopamine in behavior regulation: Concept of dopamine-E and dopam-ine-I receptors. Life Sci. 27, 1237–1253.PubMedGoogle Scholar
  28. Cross A. J., Crow T. J., Ferrier I. N., Johnstone E. C., McCreadie R. M., Owen P., Owens D. G. C., and Poulter M. (1983) Dopamine receptor changes in schizophrenia in relation to the disease process and movement disorder. J. Neurul Trans. (Suppl.) 18, 265–272.Google Scholar
  29. Crowne D. P. and Riddell W. I. (1969) Hippocampal lesions and the cardiac component o the orienting response in the rat. J. Corny. Physiol. Psychol. 69, 748–755.Google Scholar
  30. Davison K. and Bagley C. R. (1969) Schizophrenia-like psychosis associated with organic disorders of the central nervous system: A review of the literature. Brat. J Psychiatry 4, 113–187.Google Scholar
  31. Devenport L. D. (1978) Schedule-induced polydipsia in rats: Adrenocortical and hippocampal modulation. J. Camp Physiol. Psychol. 92, 651–660.Google Scholar
  32. Devenport L. D. (1979) Superstitious bar pressings in hippocampal and septal rats. Science 205, 721–723.PubMedGoogle Scholar
  33. Devenport L. D. (1980) Response-reinforcer relationships and the hippocampus. Behuv. Neural Biol. 29, 105–110.Google Scholar
  34. Devenport L. D, Devenport J. A., and Holloway F. A. (1980) Reward-induced stereotypy: Modulation by the hippocampus. Science 212, 1288,1289.Google Scholar
  35. Dewan M. J., Pandurangi A. K., Lee S. H, Ramachandran T., Levy B., Boucher M., Yozawitz A., and Major L. (1983) Central brain morphology in chronic schizophrenic patients: A controlled study. Biol. Psychiafy 18, 1133–1139.Google Scholar
  36. DeWied D. and Bohus B. (1966) Long term and short term effects on retention of a conditioned avoidance in rats treated with long acting pitressin and MSH. Nature 212, 1484–1486.Google Scholar
  37. Dunn J. D. and Orr S. E. (1984) Differential plasma corticosterone responses to hippocampal stimulation. Exp. Brain Res. 54, 1–6.PubMedGoogle Scholar
  38. Falkai P., Bogerts B., and Rozumek M. (1988) Limbic pathology in schizophrenia: The entorhinal region—a morphometric study. Biof. Psychiaty 24, 515–521.Google Scholar
  39. Fowles D. C., Watt N. F., Maher B. A., and Grinspoon L. (1970) Autonomic arousal in good and premorbid schiophrenics. Brit. J Sot. Clin. Psychol. 9, 135–147.Google Scholar
  40. Frith C. D and Done D. J. (1988) Towards a neuropsychology of schizophrenia. Brit. J. Psychiat. 153, 437–443.PubMedGoogle Scholar
  41. Gabriel M., Sparenborg S., and Stolar N. (1987) Hippocampal control of cingulate cortical and anterior thalamic information processing during learning in rabbits. Exy. Brain Res. 67, 131–152.Google Scholar
  42. Gaffan D. (1972) Loss of recognition memory in rat lesions of the fornix. Neuropychologia 10, 327–341.Google Scholar
  43. Goldman M. B. and Luchins D. J. (1987) Prevention of episodic water intoxication with target weight procedure. Amer. J. Psychiat. 144, 3.Google Scholar
  44. Goldstein M. J. and Acker C. W. (1967) Psychophysiological reactions to films by chronic schizophrenics: II. Individual differences in resting levels and reactivity. J. Abnorm. Psychol. 72, 23–29.Google Scholar
  45. Gray A. L. (1975) Autonomic correlates of schizophrenia: A reaction time paradigm. J. Abnorm. Psychol. 84, 189–196.PubMedGoogle Scholar
  46. Gray J. A. (1982) The NeuropsychoZogy of Anxiety: An Iquiry info the Functions of the Septo-Hipcamyal Sysfem. Oxford University Press, New York.Google Scholar
  47. Handford H. A. (1975) Brain hypoxia, minimal brain dysfunction and schizophrenia. Amer. J Psychiat. 132, 192–194.PubMedGoogle Scholar
  48. Harvey P. D. and Neale J. M. (1983) The specificity of thought disorder to schizophrenia: Research methods in their historical perspective, in Progress in Exprimental Personality Research vol. 12 (Maher B. A., ed.) Academic, New York, pp. 153–180.Google Scholar
  49. Hemsley D. R. and Zawada S. L. (1976) ″Filtering″ and the cognitive deficits in schizophrenia. Brit.J. Psychiat. 128, 456–461.PubMedGoogle Scholar
  50. Hendrickson C. W., Kimble R. J., and Kimble D. P. (1969) Hippocampal lesions and the orienting response. J. Camp Physiol. Psychol. 67, 220–227.Google Scholar
  51. Hirsh R. (1974) The hippocampus and contextual retrieval of information from memory: A theory. Behav. Biol. 12, 421–444.PubMedGoogle Scholar
  52. Hirsh R., Holt L., and Mosseri A. (1978) Hippocampal mossy fibers, motivational states, and contextual retrieval. Exp. Neurol. 62, 68–79.PubMedGoogle Scholar
  53. Huag O. (1982) Pneumoencephalographlc evidence of brain atrophy in acute and chronic schizophrenia. Acta Psychiafr. Stand. 66, 374.Google Scholar
  54. Hunt J. McV. (1936) Psychological experiments with disordered persons. Psychol. Bull. 33, 1–58.Google Scholar
  55. Hunt J. Mcv., and Cofer C. N. (1944) Psychological deficit, in Personality and the Behavior Disorder (Hunt J. McV., ed.), Ronald Press, New York, pp. 971–1032.Google Scholar
  56. Isaacson R. L. (1980) A perspective for the interpretation of limbic system function. PhysioZ. Psychol. 8, 183–188.Google Scholar
  57. Isaacson R. L. (1982) The Limbic System (Plenum, New York).Google Scholar
  58. Isaacson R. L., Douglas R. J., and Moore R. Y. (1961) The effect of radical hippocampal ablation on acquisition of an avoidance response. J. Corny. Physiol. Psychol. 54, 625–628.Google Scholar
  59. Isaacson R. L. and Woodruff M. (1975) Spontaneous alternation and passive avoidance behavior in rats after hippocampal lesions, in Exprimental Psychology (Hart B., ed.) Freeman Press, San Francisco.Google Scholar
  60. Jacob H. and Beckman H. (1986) Prenatal developmental disturbances in the liibic allocortex in schizophrenics. J. Neural Trans. 65, 303–326.Google Scholar
  61. Kesner R. P. and Novak J. M. (1982) Serial position curve in rats: Role of the dorsal hippocampus. Science 218, 173–175.PubMedGoogle Scholar
  62. Kimble D. P. (1963) The effects of bilateral hippocampal lesions in rats. J. Camp. Physiol. Psychol. 56, 337–340.Google Scholar
  63. Kimble D. P. (1968) Hippocampus and internal inhibition. Psychol. Bull. 70, 285–295.PubMedGoogle Scholar
  64. Knigge K. M. (1966) Feedback mechanisms in neural control of adrenohypophyseal function: Effect of steroids implanted in amygdala and hippocampus. Second International Congress on Hormonal Steroids, Milan, Italy.Google Scholar
  65. Kolb B. and Wishaw I. Q. (1983) Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurological patients. J. Nerv. Menf. Dis. 171, 435–443.Google Scholar
  66. Kovelman J. A. and Scheibel A. B. (1984) A neurohistological correlate of schizophrenia. Biol. Psychiat. 19, 1601–1621.PubMedGoogle Scholar
  67. Kurachi M., Kobayashi K., Matsubara R., Hiramatsu H., Yamaguchi N., Matsuda H., Maeda T., and Hisada K. (1985) Regional cerebral blood flow in schizophrenic disorders. Eur. Neural. 24, 176–181.Google Scholar
  68. Lang P. J. and Buss A. H. (1965) Psychological deficit in schizophrenia: II. Interference and activation. J. Abnorm. Psychol. 70, 77–106.PubMedGoogle Scholar
  69. Lawson J. S., McGhie A, and Chapman J. (1967) Distractibility and organic cerebral disease. Brit. J. Psychiat. 113, 527–535.PubMedGoogle Scholar
  70. Leaton R. N. (1981) Habituation of startle response, lick suppression, and exploratory behavior in rats with hippocampal lesions. J. Corny. Physiol. Psychol. 95, 813–826.Google Scholar
  71. Lesch A. and Bogerts B. (1984) The diencephalon in schizophrenia: Evidence for reduced thickness of the periventricular grey matter. Eur. Arch. Psychiatr. Neural. Sci. 234, 212–219.Google Scholar
  72. Lorens S. A., Sorenson J. P., and Harvey J. A. (1970) Lesions of the nuclei accumbens septi of the rat: Behavioral and neurochemical effects. J. Camp. Physiol. Psychol. 73, 284–290.Google Scholar
  73. Lubow R. E., Weiner I., Schlossberg A., and Baruch I. (1987) Latent inhibition and schizophrenia. Bull. Psychon. Sot. 25, 464–467.Google Scholar
  74. Luchins D., J. Pollin W, and Wyatt R. J. (1980) Laterality in monozygotic schizophrenic twins: An alternative hypothesis. Biol. Psychiat. 15, 87–93.PubMedGoogle Scholar
  75. Lyon L. and Robbins R. (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects. Curr. Dev. Psychophurmacol. 2, 81–162.Google Scholar
  76. Magaro P. A. (1973) Skin conductance basal level and reactivity in schizophrenia as a function of chronicity, premorbid adjustment, diagnosis and medication. J. Abnorm. Psychol. 76, 242–248.Google Scholar
  77. Mastroiani P. P. (1979) Hippocampal lesions and the generalization of auditory stimuli. Neuropsychologik 17, 401–412.Google Scholar
  78. Matthysse S. (1981) Nucleus accumbens and schizophrenia, in Neurobioiogy of the Nucleus Accumbens (Chronister R. B. and DeFrance J. F, eds.) Haer Institute, Brunswick, ME, pp. 351–359.Google Scholar
  79. Mays L. L. (1934) Studies on catatonia: V. Investigation of the perseverational tendency. Psychiatr. Quart. 8, 728.Google Scholar
  80. McKinney W. T. and Bunney W. E., Jr, (1969) Animal models for depression. A review of evidence: Evidence for Research. Arch. Gm. Psychiat. 21, 240–248.Google Scholar
  81. Mednick S. A. (1974a) Breakdown in individuals at high risk for schizophrenia: Possible predispositional perinatal factors, in Genetics, Environment, and Psychopathology (Mednick A., Schulsinger F., Higgins J., and Bell B., eds.) North Holland, Amsterdam, pp. 249–262.Google Scholar
  82. Mednick, S. A. (1974b) Electrodermal recovery and psychopathology. in Genetics, Environment, and Psychopathology (Mednick A., Schulsinger F., Higgins J., and Bell B., eds.) North Holland, Amsterdam, pp. 135–148.Google Scholar
  83. Mednick S. A., Parnes J., and Schulsinger F. (1987) The Copenhagen highrisk project, 1962-1986. Schizophr. Bull. 5, 460–479.Google Scholar
  84. Meltzer H. Y. (1987) Biological studies in schizophrenia. Schizophr. Bull. 13, 77–111.PubMedGoogle Scholar
  85. Mogenson G. J. and Nielsen M. A. (1983) Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain. Res. Bull. 11, 309–314.PubMedGoogle Scholar
  86. Morris R. G. M., Garrud P., Rawlins J. N. P., and O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683.PubMedGoogle Scholar
  87. Nachmani G. and Cohen B. D. (1969) Recall and recognition free learning in schizophrenics. J. Abnorm. Psychol. 74, 511–516.PubMedGoogle Scholar
  88. Naficy A. and Willerman L. (1980) Excessive yielding to normal biases is not a distinctive sign of schizophrenia. J. Abnorm. Psychol. 89, 697–703.PubMedGoogle Scholar
  89. Neale J. M. and Cromwell R. L. (1968) Size estimation in schizophrenics as a function of stimulus presentation time. J Abnorm. Psychol. 73, 44–49.PubMedGoogle Scholar
  90. Neale J. M. and Oltmanns T. F. (1980) Schizophrenia. Wiley, New York.Google Scholar
  91. Oades R. D. (1982) Attenfion and Schizoyhrcniu. Pitman, London.Google Scholar
  92. Oades R. D. and Isaacson R. L. (1978) The development of food search behavior by rats: The effects of hippocampal damage and haloperidol treatment. Behav. Biol. 24, 327–337.PubMedGoogle Scholar
  93. Oades R. D., Taghzouti K., Rivet J. M., Simon H., and LeMoal M. (1986) Locomotor activity in relation to dopamine and noradrenaline in the nucleus accumbens, septal and frontal areas: A 6-hydroxydopamine study. Neuropsychobiology 16, 37–42.PubMedGoogle Scholar
  94. O’Keefe J. and Nadel L. (1978) The Hippocumyus as u Cognitive May. Clarendon, Oxford, UK.Google Scholar
  95. Oltmanns T. F. (1978) Selective attention in schizophrenia and manic psychoses: The effect of distraction on information processing. J. Almorm. Psychol. 87, 212–225.Google Scholar
  96. Osborne B. and Seggie J. (1980) Behavioral, corticosterone, and prolactin responses to novel environment in rats with fornix transections. J. Corny. Physiol. Psychol. 94, 536–546.Google Scholar
  97. Paller K. A., Zola-Morgan S., Squire L. R., and Hillyard S. A. (1988) P3-like brain waves in normal monkeys and in monkeys with medial temporal lesions. Behuv. Neurosci. 102, 714–725.Google Scholar
  98. Payne R. W., Matussek P., and George E. I. (1959) An experimental study of schizophrenic thought disorder. J. Ment. Sci. 105, 627–652.PubMedGoogle Scholar
  99. Pearce J. M. and Hall G. (1980) A model for Pavlovian learning: Variations in the effectiveness of unconditioned but not unconditioned stimuli. Psychol. Rev. 87, 532–552.PubMedGoogle Scholar
  100. Pffafman C. and Schlosberg H. (1930) The conditioned knee jerk in psychotic and normal individuals. J. Psychol. 1, 201–206.Google Scholar
  101. Port R. L., Romano A. G., Paterson M. M. (1986) Stimulus duration discrimination in the rabbit: Effects of hippocampectomy on discrimination and reversal learning. Physiol. Psychol. 14, 124–129.Google Scholar
  102. Powell D. A. and Buchanan S. (1980) Autonomic-somatic relationships in the rabbit (OryctoZogus cuniculus): Effects of hippocampal lesions. Physiol. Psychol. 8, 455–462.Google Scholar
  103. Pritchard W. S. (1986) Cognitive event-related potential in schizophrenics. Psychol. Bull. 100, 43–66.PubMedGoogle Scholar
  104. Pycock C. J., Kerwin R. W., and Carter C. J. (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286, 74–76.PubMedGoogle Scholar
  105. Redding F. K. (1967) Modification of sensory cortical evoked potentials by hippocampal stimulation. Electroencephlogr. Clin. Neuroyhysiol. 22, 74–83.Google Scholar
  106. Reinstein D. K. (1980) Behavioral and Biochemical Changes after Hippocampal Damage. Unpublished PhD Dissertation, SUNY-Binghamton, New York.Google Scholar
  107. Rickert E. J. and Bennett T. L., and French J. (1978) Hippocampectomy and the attenuation of blocking. Behav. Biol. 22, 597–609.Google Scholar
  108. Rickert E. J., Lorden J. F., Dawson R., Smyly E., and Callahan M. F. (1979) Stimulus processing and stimulus selection in rats with hippocampal lesions. Behav. Neural Biol. 29, 454–465.Google Scholar
  109. Robbins T. W. and Koob G. F. (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285, 409–412.PubMedGoogle Scholar
  110. Saitoh O., Niwa S. I., Hiramatsu K. I., Kameyama T., Rymar K., and Itoh K. (1984) Abnormalities in late positive components of event-related potentials may reflect a genetic predisposition to schizophrenia. Biol. Psychiat. 19, 293–303.PubMedGoogle Scholar
  111. Scheibel A. B. and Kovelman J. A. (1981) Disorientation of the hippocampal pyramidal cell and its processes in the schizophrenic patient. Biol. Psychiat. 16, 101–102.Google Scholar
  112. Schmajuk N. A. (1984) A model for the effects of hippocampal lesions on Pavlovian conditioning. Abstracts 14th Ann. Meeting Society for Neuro-science 10, 124.Google Scholar
  113. Schmajuk N. A. (1987) Animal models for schizophrenia: The hippocampally lesioned animal. Schiz. Bull. 13, 317–327.Google Scholar
  114. Schmajuk N. A. (1989) The hippocampus and the control of information storage in the brain, in Dynamic interactions in Neural Networks: Models and Data (Arbib M. and Amari S. I., eds.), Springer-Verlag, New York.Google Scholar
  115. Schmajuk N. A. and Isaacson R. L. (1984) Classical contingencies in rats with hippocampal lesions. Physiol. Behav. 33, 889–893.PubMedGoogle Scholar
  116. Schmajuk N. A. and Moore J. W. (1988) The hippocampus and the classically conditioned nictitating membrane response: A real-time attentional-associative model. Psychobiology 46, 20–35.Google Scholar
  117. Schmajuk N. A., Spear N. E., and Isaacson R. L. (1983) Absence of overshadowing in rats with hippocampal lesions. PhysioZ. Psychol. 11, 59–62.Google Scholar
  118. Schmajuk N. A. and Moore J. W. (1985) Real-time attentional models for classical conditioning and the hippocampus. Physiol. Psychol. 11, 278–290.Google Scholar
  119. Schmaltz L. W. and Theios J. (1972) Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (olyctolagus cuniculus). J. Camp. Physiol. Psychol. 79, 328–333.Google Scholar
  120. Seidman L. J. (1983) Schizophrenia and brain dysfunction: An integration of recent neurodiagnostic findings. Psychol. Bull. 94, 195–238.PubMedGoogle Scholar
  121. Shagass C., Roemer R. A., Straumanis J, J., and Amadeo M. (1978) Evoked potentials of schizophrenics in several sensory modalities. Biol. Psychiat. 13, 163–184.PubMedGoogle Scholar
  122. Shipley W. C. (1934) Studies of catatonia: VI. Further investigation of preseverative tendency. Psychiat. Quart. 8, 736–744.Google Scholar
  123. Solomon P. R. (1977) Role of the hippocampus in blocking and conditioned inhibition of the rabbit nictitating membrane response. J. Corny. Physiol. Psychol. 91, 407–417.Google Scholar
  124. Solomon P. R. and Moore J. W. (1975) Latent inhibition and stimulus generalization of the classically conditioned response in rabbits following dorsal hippocampal ablations. J. Corny. Physiol. Psychol. 89, 1192–1203.Google Scholar
  125. Suddath R. L., Casanova M. F., Goldberg T. E., Daniel D. G., Kelsoe J. R., and Weinberger D. R. (1989) Temporal lobe pathology in schizophrenia. Amer. J Psychiatry 146, 464–472.Google Scholar
  126. Swerdlow N. R. and Koob G. P. (1987) Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav. Brain Sci. 10, 197–245.Google Scholar
  127. Thayer J. and Silber D. E. (1971) Relationships between levels of arousal and responsiveness among schizophrenics and normal subjects. J. ALnorm. Psychol. 77, 162–173.Google Scholar
  128. Thompson R. F. (1986) The neurobiology of learning and memory. Science 233, 941–947.PubMedGoogle Scholar
  129. Torrey E. F. and Peterson M. R. (1974) Schizophrenia and the limbic system. Lancet 11, 942–946.Google Scholar
  130. Venables P. H. (1966) Psychophysiological aspects of schizophrenia. Br. J Med. Psychol. 39, 289–297.Google Scholar
  131. Venables P. H. (1973) Input regulation and psychopathology, in Psychoyathology (Hammer M., Salzinger K., and Sutton S., eds.), Wiley, New York, pp. 261–284.Google Scholar
  132. Venables P. H. (1974) The recovery limb of the skin conductance response in “high-risk” research, in Genetics, Environment, and Psychopathology (Mednick A., Schulsinger F., Higgins J., and Bell B., eds.) North Holland, Amsterdam, pp. 117–134.Google Scholar
  133. Venables P. H. (1977) The electrodermal physiology of schizophrenics and children at risk for schizophrenia: Controversies and development. Schiz. Bull. 3, 28–48.Google Scholar
  134. Vinogradova N. V. (1962) Protective and stagnant inhibition in schizophrenics. Zh. Vyssh. Nerv. Deiat. 12, 426–431.Google Scholar
  135. Walaas I. and Fonnum F. (1979) The effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat. Neuroscience 4, 209–216.PubMedGoogle Scholar
  136. Weckowicz T. E. (1957) Size constancy in schizophrenic patients. J. Ment. Sci. 103, 475–486.PubMedGoogle Scholar
  137. Weckowicz T. E., and Blewett D. B. (1959) Size constancy and abstract thinking in schizophrenic patients. J. Merit, Sci. 105, 909–934.Google Scholar
  138. Weikart C. and Berger T. W. (1986) Hippocampal lesions disrupt classical conditioning of cross-modality reversal learning of the rabbit nictitating membrane response. Behav. Brain Res. 22, 85–90.PubMedGoogle Scholar
  139. Weinberger D. R., Berman K. F., and Illowsky B. P. (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Arch. Gen. Psychiatry 45, 609–615.PubMedGoogle Scholar
  140. Weinberger D. R., Wagner R. L., and Wyatt R. J. (1983) Neuropathological studies of schizophrenia: A selective review. Schizophr. Bull. 9, 193–212.PubMedGoogle Scholar
  141. Wickelgren W.O. and Isaacson R. L. (1963) Effect of the introduction of an irrelevant stimulus in runway performance of the hippocampectomized rat. Nature 200, 48–50.PubMedGoogle Scholar
  142. Yang C. R. and Mogenson G. J. (1986) Dopamine enhances the terminal excitability of hippocampal-nucleus accumbens neurones by D2 receptor. J. Neurosci. 6, 247–2478.Google Scholar
  143. Zahn T. P. (1964) Autonomic reactivity and behavior in schizophrenia. Psychid, Res. Rep. 19, 156–172.Google Scholar
  144. Zahn T. P., Rosenthal D., and Lawlor W. G. (1968) Electrodermal and heart rate orienting in chronic schizophrenia. J. Psychiat. Res. 6, 117–134.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1991

Authors and Affiliations

  • Nestor A. Schmauk
    • 1
  • Mabel Tyberg
    • 1
  1. 1.Department of PsychologyNorthwestern UniversityEvanston

Personalised recommendations