Animal Models with Parallels to Schizophrenia

  • Melvin Lyon
Part of the Neuromethods book series (NM, volume 18)


Schizophrenia is frequently regarded in psychiatry as a purely human disorder, with only vague parallels to certain forms of animal behavior. Although monkeys, cats, and dogs, and even rats, may be described as having certain psychotic symptoms, the existence of full-blown schizophrenia has been difficult to model in animals. It is the purpose of this chapter to review critically some of the methods used to induce in animals symptoms thought to be highly similar to those of schizophrenia. An attempt will also be made to indicate promising areas for future research.


Social Isolation Ventral Tegmental Area Schizophrenic Patient Stereotyped Behavior Lateral Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. American Psychiatric Association (1980) DSM-III: Diugnostic and Statistical Munual of Mental Disorders, 3rd Ed. (American Psychiatric Association, Washington, DC).Google Scholar
  2. Andreasen N. C., Olsen S. A., Dennert J, W., and Smith M. R. (1982) Ventricular enlargement in schizophrenia: Relationship to positive and negative symptoms. Am. J. Psychiat. 139, 297–302.PubMedGoogle Scholar
  3. Angrist B. (1983) Psychoses induced by central nervous system stimulants and related drugs, in Stimulants: Neurochemicul, Behavioral, and Clinical Perspectives (Creese I., ed.) Raven, New York, pp. 1–30.Google Scholar
  4. Arnt J. and Scheel-Kruger J. (1979) GABA in the ventral tegmental area: Differential regional effects on locomotion, aggression and food intake after microinjection of GABA agonists and antagonists. Lqe Sci. 25, 1351–1360.Google Scholar
  5. Beninger R. J., Mason S. T., Phillips A. G., and Fibiger H. C. (1980) The use of conditioned suppression to evaluate the nature of neuroleptic-induced avoidance deficits. J. Phurm. Exp. Ther. 213, 623–627.Google Scholar
  6. Bleuler E. (1950) Dtlmentia Praecox (International University Press, New York).Google Scholar
  7. Bloom F., Segal D., Ling N., and GuiIIemin R. (1976) Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental iIIness. Science 194, 630–632.PubMedGoogle Scholar
  8. Bogerts B., Meertz E., and Schonfeldt-Bausch R. (1985) Basal ganglia and limbic system pathology in schizophrenia. Arch. Gen. Psychait. 42, 784–791.Google Scholar
  9. Bogerts B. (in press) The neuropathology of schizophrenia: Pathophysiological and neurodevelopmental implications, in Fetal Neural Deuelopment and Adult Schizophrenia (Mednick S. A., Cannon T. D, Barr C. E., and Lyon M., eds.) Cambridge University Press, Cambridge, UK.Google Scholar
  10. Bracha H. S. (1987) Asymmetric rotational (circling) behavior, a dopamine-related asymmetry: Preliminary findings in unmedicated and never-medicated schizophrenic patients. Biol. Psychiat. 22, 995–1003.PubMedGoogle Scholar
  11. Bracha H. S. (1989) Is there a right hemi-hyper-dopaminergic psychosis? Schiz. Res. 2, 317–324.Google Scholar
  12. Brown D. A. (1983) Slow cholinergic excitation—a mechanism for increasing neuronal excitability. Trends Neural. Sci. 12, 302–307.Google Scholar
  13. Buchsbaum M. S. and Haier R. J. (1987) Functional and anatomical brain imaging: Impact on schizophrenia research. Schiz. Bull. 13(l), 115–132.Google Scholar
  14. Carlsson A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropychoyharmacology 1(31), 179–186.Google Scholar
  15. Castellano M. A., Diaz-Palarea M. D., Barroso J., and Rodriguez M. (1989) Behavioral lateralization in rats and dopaminergic system: individual and population laterality. Behau. Neurosci. 103, 46–53.Google Scholar
  16. Claridge G. (1978) Animal models of schizophrenia: The case for LSD-25. Schizophr. Bull. 4, 186–209.PubMedGoogle Scholar
  17. Costall B., Domeney A. M., and Naylor R. J. (1984a) Locomotor hyperactivity caused by dopamine infusion into the nucleus accumbens of rat brain: Specificity of action. Psychopharmacology 82, 174–180.PubMedGoogle Scholar
  18. Costall B., Domeney A. M, and Naylor R. J. (1984b) Long-term consequences of antagonism by neuroleptics of behavioural events occurring during mesolimbic dopamine infusion. Neuropharmacology 23, 287–294.PubMedGoogle Scholar
  19. Creese I. and Iversen S. D. (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res. 83, 242–248.Google Scholar
  20. Cuello A. C. and Sofroniew M. V. (1984) The anatomy of the CNS cholinergic neurons. Trends Neural. Sci. 13, 74–78.Google Scholar
  21. Davis J. M., Janowsky D., Tamminga C., and Smith R. C. (1978) Cholinergic mechanisms in schizophrenia, mania and depression, in Cholinelgic Mechanisms and Psychopharmacology (Jenden D. J., ed.) Plenum, New York, pp. 805–815.Google Scholar
  22. Deniker P. (1966) La Psychopharmacologic (Presses Universitaires de France, Paris).Google Scholar
  23. Devenport L. D., Devenport J., and Holloway P. A, (1981) Reward-induced stereotypy: Modulation by the hippocampus. Science 212, 1288–1289.PubMedGoogle Scholar
  24. De Wied D. (1978) Psychopathology as a neuropeptide dysfunction, in Characteristics and Function ofopioids (Van Ree J. M. and Terenius L., eds.), Elsevier/North-Holland, Amsterdam, pp. 113–122.Google Scholar
  25. De Wied D. (1979) Schizophrenia as an inborn error in the degradation of beta-endorphin—a hypothesis. Trends Neurosci. 2, 79–82.Google Scholar
  26. Dill R. E., Jones D. L., Gillin C., and Murphy G. (1979) Comparison of behavioral effects of systemic L-DOPA and intracranial dopamine in mesolimbic forebrain of nonhuman primates. Pharmacol. Biochem. Behav. 10, 711–716.PubMedGoogle Scholar
  27. Dourish C. T. (1982) A pharmacological analysis of the hyperactivity syndrome induced by beta-phenylethylamine in the mouse. Br. J. Pharmacol. 77, 129–139.PubMedGoogle Scholar
  28. Dubach M. F. and Bowden D. M. (1983) Response to intracerebral dopamine injection as a model of schizophrenic symptomatology, in Ethopharmacology: Primate Models of Neuropychiatric Disorders (Miczek K. A., ed.), Alan R. Liss, New York, pp. 157–184.Google Scholar
  29. Einon D. F. and Morgan M. J. (1977) A critical period for social isolation in the rat. Dev. Psychobiol. 10, 123–132.PubMedGoogle Scholar
  30. Eison M. S., Eison A. S., and Iversen S. D. (1983) Two routes of continuous amphetamine administration induce different behavioral and neurochemical effects in the rat. Neurosci. Lett. 39, 313–319.PubMedGoogle Scholar
  31. Ellinwood E. H., Jr. and Kilbey M. M. (1977) Chronic stimulant intoxication models of psychosis, in Animal Models in Psychiatry and Neurology (Hanin I. and Usdin E., eds.), Pergamon, Oxford, UK, pp. 61–74.Google Scholar
  32. Ellinwood E. H., Jr. and Sudilovsky A. (1973) Chronic amphetamine intoxication: Behavioral model of psychoses, in Psychopathology and Psychopharmacology (Cole J. O., Freedman A. O., and Friedhoff A. J., eds.), Johns Hopkins University Press, Baltimore, pp. 51–70.Google Scholar
  33. Ellinwood E. H., Jr., Sudilovsky A., and Nelson L. M. (1972) Behavioral analysis of chronic amphetamine intoxication. Biol. Psychiat. 4, 215–225.PubMedGoogle Scholar
  34. Ettenberg A. and Horvitz J. C. (1987) Haloperidol blocks the incentive motivational properties of food reinforcement. Sot. Neurosci. Abst. 13, 219.Google Scholar
  35. Ettenberg A., Koob G. F., and Bloom F. E. (1981) Response artifact in the measurement of neuroleptic-induced anhedonia. Science 213, 357–359.PubMedGoogle Scholar
  36. Evenden J. L. and Robbins T. W. (1983) increased response switching, perseveration and perseveration switching following d-amphetamine in the rat. Psychopharmacology 80, 67–73.PubMedGoogle Scholar
  37. Fantie B. D. and Nakajima S. (1987) Operant conditioning of hippocampal theta: Dissociating reward from performance deficits. Behav. Neurosci. 101, 626–633.PubMedGoogle Scholar
  38. Farde L., Wiesel F-A., Stone-Elander S., Halldin C., Nordstrom A-L., Hall H., and Sedvall G. (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. Arch. Gen. Psychiat. 47, 213–219.PubMedGoogle Scholar
  39. Fibiger H. C. and Campbell B. A. (1971) The effect of parachlorophenylalanine on spontaneous locomotor activity in the rat. Neuropharmacology 10, 25–32.PubMedGoogle Scholar
  40. Fischman M. W. and Schuster C. R. (1974) Tolerance development to chronic methamphetamine intoxication in the rhesus monkey. Pharmacol. Biochem. Behav. 2, 503–508.PubMedGoogle Scholar
  41. Flor-Henry P. (1976) Lateralized temporal-limbic dysfunction and psychopathology. Ann. NYA cad. Sci. 230, 777–795.Google Scholar
  42. Freeman J. M., ed. (1985) Prenatal and Perinatal Factors Associated with Brain Disorders (Publ. No. 85-1149, NIMH, Rockville, MD) April, 1985.Google Scholar
  43. Frith C. D. and Done D. J. (1983) Stereotyped responding by schizophrenic patients on a two-choice guessing task. Psychol. Med. 13, 779–786.PubMedGoogle Scholar
  44. Gilles F. H., Leviton A., and Dooling E. C., eds. (1983) The Developing Human Brain. Growth and Eyidemiological Neuropathology (Wright PSG, Boston).Google Scholar
  45. Glick S. D. and Cox R. D. (1978) Nocturnal rotation in normal rats: Correlation with amphetamine-induced rotation and effects of nigrostriatal lesions. Brain Res. 150, 149–161.PubMedGoogle Scholar
  46. Glick S. D., Zimmerberg B., and Jerussi T. P. (1977) Adaptive significance of laterality in the rodent. Ann. NY Acad. Sci. 299, 180–185.PubMedGoogle Scholar
  47. Godukhin 0. V., Zharikova A. D., and Budantsev A. Yu. (1984) Role of presynaptic dopamine receptors in regulation of the glutamatergic neurotransmission in rat neostrlatum. Neuroscience 12(2), 377–383.PubMedGoogle Scholar
  48. Goldman-Rakic P. S. (1987) Development of cortical circuitry and cognitive function. Child Dev. 58, 601–622.PubMedGoogle Scholar
  49. Golub M. and Kometsky C. (1974) Seizure susceptibility and avoidance conditioning in adult rats treated prenatally with chlorpromazine. Deu. Psychobiol. 7, 79–88.Google Scholar
  50. Goosen C. (1981) Abnormal behavior patterns in rhesus monkeys: Symptoms of mental disease?Biol. Psychiat. 16, 697–716.PubMedGoogle Scholar
  51. Green M., Satz P., Smith C and Nelson L. (1989) Is there a typical handedness in schizophrenia?J Abnorm. Psychol. 98(l), 57–61.PubMedGoogle Scholar
  52. Grilly D. M. (1977) Rate-dependent effects of amphetamine resulting from behavioural competition. Biobehav. Reu. 1, 87–93.Google Scholar
  53. Gur R. E. (1978) Left hemisphere dysfunction and left hemisphere overactivation in schizophrenia. J. Abnorm. Psychol. 87, 226–238.PubMedGoogle Scholar
  54. Haber S., Barchas P. R., and Barchas J. D. (1977) Effects of amphetamine on social behaviors of rhesus macaques: An animal model of paranoia, in Animal Models in Psychiatry and Neurology (Hanin I and Usdin E., eds.), Pergamon, New York, pp. 107–114.Google Scholar
  55. Huberman H. S, Eison M. S., Bryan K., and Ellison G. (1977) A slow-release pellet for chronic amphetamine administration, Eur. J. Pharmacol. 45, 237–240.PubMedGoogle Scholar
  56. Huttunen M. O. and Niskanen P. (1978) Prenatal loss of father and psychiatric disorders. Arch. Gen. Psychiat. 35, 429–431.PubMedGoogle Scholar
  57. Iversen S. D. (1977) Striatal function and stereotyped behaviour, in The Psychobiology of the Striatum (Cools A. R., Lohman A. H. M, and van der Bercken J. H. L., eds.), North-Holland, Amsterdam, pp. 99–118.Google Scholar
  58. Jakob H. and Beckmann H. (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenia. J. Neurotrans. 65, 303–326.Google Scholar
  59. Janssen P. A. J. (1967a) The pharmacology of haloperidol. Int. J. Neuropsychiat. 3, SlO–S18.Google Scholar
  60. Janssen P. A. J. (1967b) Haloperidol and related butyrophenones, in Psychopharmacological Agents, Vol. 4 (Gordon M., ed.) Academic, New York, pp.69–72.Google Scholar
  61. Jones D. L., Berg S. L., Dorris R. L., and Dill R. E. (1981a) Biphasic locomotor response to intra-accumbens dopamine in a nonhuman primate. Pharmacol. Biochem. Behav. 15, 243–246.PubMedGoogle Scholar
  62. Jones D. L., Mogenson G. J., and Wu M. (1981b) injections of dopaminergic, cholinergic, serotoninergic and gabaergic drugs into the nucleus accumbens: Effects on locomotor activity in the rat. Neuropharmacology 20, 29–37.PubMedGoogle Scholar
  63. Jones G. H., Hernandez, T. D., and Robbins, T. W. (1987) Isolation-rearing impairs the acquisition of schedule-induced polydipsia. Sot. Neurosci. Abst. 13(l), 405.Google Scholar
  64. Jones G. H., Marsden C. A., and Robbins T. W. (1989) Hypersensitivity to reward-related stimuli and to intraaccumbens d-amphetamine following social deprivation in rats. Sec. Neurosci. Abst. 15, 412.Google Scholar
  65. Kerwin R. (1990) The neurochemical anatomy of the hippocampus in postmortem schizophrenic brain, Schizophr. Res. 3, 33,34.Google Scholar
  66. Kline J., Jr. and Reid K. H. (1985) The acute periventricular injury syndrome: A possible animal model for psychotic disease. Psychopharmacology 87, 292–297.PubMedGoogle Scholar
  67. Kornetsky C. (1977) Animal models: promises and problems, in Animal Models in Psychiatry and Neurology (Hanin I. and Usdin E., eds.), Pergamon, New York, pp. 1–8.Google Scholar
  68. Kornhuber J. and Fischer E. G. (1982) Glutamic acid diethyl ester induces catalepsy in rats. A new model for schizophrenia? Neurosci. Lett. 34, 325–329.PubMedGoogle Scholar
  69. Kovelman J. A. and Scheibel A. B. (1984) A neurohistological correlate of schizophrenia. Biol. Psychiat. 19, 1601–1621.PubMedGoogle Scholar
  70. Kraemer G. W., Ebert M. H., Lake C. R., and McKinney W. T. (1983) Amphetamine challenge: Effects in previously isolated rhesus monkeys and implications for animal models of schizophrenia, in Ethopharmacology: Primate Models of Neuropsychiatric Disorders (Miczek K., ed.), Liss, New York, pp. 199–218.Google Scholar
  71. Ladinsky H., Consolo S, Peri G., Cruneili V, and Samanin R. (1978) Pharmacological evidence for a serotoninergic-cholinergic link in the striatum, in Cholinergic Mechanisms and Psychopharmacology (Jenden D. J., ed.), Plenum, New York, pp. 615–627.Google Scholar
  72. Lyon M. (1990) Animal models of mania and schizophrenia, in Behavioural Models in Psychophurmacology (Willner P., ed.), Cambridge University Press, Cambridge, UK.Google Scholar
  73. Lyon M. and Barr C. E. (in press) Possible interactions of obstetrical complications and abnormal fetal brain development in schizophrenia, in Fetal Neural Development and Adult Schizophrenia (Mednick S. A., Cannon T. D, Barr C. E, and Lyon M, eds.), Cambridge University Press, New York.Google Scholar
  74. Lyon M., Barr C. E., Cannon T. D., Mednick S. A, and Shore D. (1989) Fetal neural development and schizophrenia. Schiz. Bull. 15, 149–161.Google Scholar
  75. Lyon M. and Magnusson M. S. (1982) Central stimulant drugs and the learning of abnormal behavioral sequences, in Behavioral Models and the Analysis of Drug Action (Spiegelstein, M. Y. and Levy, A., eds.), Elsevier Scientific, Amsterdam, pp. 135–153.Google Scholar
  76. Lyon M. and Randrup A. (1972) The dose-response effect of amphetamine on avoidance behavior in the rat seen as a function of increasing stereotypy. Psychopharmacologiu (Berl.) 23, 324–347.Google Scholar
  77. Lyon M. and Robbins T. W. (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects, in Current Developments in Psychopharmacology, Vol. 2. (Essman W. and Valzelli L., eds.), Spectrum, New York, pp. 79–163.Google Scholar
  78. Lyon N. and Gerlach J. (1988) Perseverative structuring of responses by schizophrenic and affective disorder patients. J Psychiat. Res. 23, 261–277.Google Scholar
  79. Lyon N. and Satz P. (1991) Left-turning (swivel) in medicated chronic schizophrenia patients. Schiz. Res. Google Scholar
  80. Lyon N., Mejsholm B., and Lyon M. (1986) Stereotyped responding in schizophrenic outpatients: Cross-cultural confirmation of perseverative switching on a two-choice task. J.Psychiat. Res. 20, 137–150.PubMedGoogle Scholar
  81. Makanjuola R. 0. A., Hill G., Dow R. C, Campbell G., and Ashcroft G. W. (1977) The effects of psychotropic drugs on exploratory and stereotyped behaviour of rats studied on a hole-board. Psychopharmacology 55, 67–74.PubMedGoogle Scholar
  82. Mason W. A. (1968) Early social deprivation in the nonhuman primates: Implications for human behavior, in Environmental Influences (Glass, D. C., ed.), Rockefeller University Press and Russell Sage Foundation, New York, pp. 70–100.Google Scholar
  83. Mednick, S. A. (1958) A learning theory approach to research in schizophrenia. Psychological Bulletin 55, 316–327.PubMedGoogle Scholar
  84. Mednick S. A., Cannon T. D., Barr C. E., and Lyon M., eds. (in press) Fetal Neural DLweloyment and Adult Schizophrenia. Cambridge University Press, Cambridge, UK.Google Scholar
  85. Mednick S. A., Machon R. A., Huttunen M. O., and Bonett D. (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch. Gen. Psychiat. 45, 189–192.PubMedGoogle Scholar
  86. Milner B. (1965) Memory disturbance after bilateral hippocampal lesions, in Cognitive Processes and the Brain (Milner P. and Glickman S., eds.), Van Nostrand, Princeton, NJ.Google Scholar
  87. Morris R. G. M, Garrud P., Rawlins J. N. P., and O’Keefe J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683.PubMedGoogle Scholar
  88. Nielsen E. B. (1981) Rapid decline of stereotyped behavior in rats during constant one week administration of amphetamine via implanted ALZET osmotic minipumps. Pharmacol. Biochem. Behav. 15, 161–165.PubMedGoogle Scholar
  89. Nielsen E. B. and Lyon M. (1982) Behavioral alterations during prolonged low level continuous amphetamine administration in a monkey family group (Cercopithecus aethiops). Biol. Psychiat. 17, 42–34.Google Scholar
  90. Nielsen E. B., Lyon M., and Ellison G. (1983) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days. Possible relevance to amphetamine psychosis.J. New. Merit. Dis. 171, 222–233.Google Scholar
  91. Nowakowski R. S. (1987) Basic concepts of CNS development. Child Dev. 58, 568–595.PubMedGoogle Scholar
  92. Oades R. D. (1982) Search strategies on a hole-board are impaired in rats with ventral tegmental damage: Animal model for tests of thought disorder, Biol. Psychiat. 17, 243–258.PubMedGoogle Scholar
  93. Olton D. S. (1983) Memory functions and the hippocampus, in Neurobiology of the Hipcamps (Siefert W., ed.), Academic, New York.Google Scholar
  94. Olton D. S., Collison C., and Wen M. A. (1977) spatial memory and radial arm maze performance in rats. Learn. Motiv. 8, 289–314.Google Scholar
  95. Otake M. and Shull W. J. (1984) in utero exposure to A-bomb radiation and mental retardation: A reassessment. Br.J Radiol. 57, 409–414.PubMedGoogle Scholar
  96. Papez J, W. (1937) A proposed mechanism of emotion. Arch. Neurol. Psycheat. 38, 725–744.Google Scholar
  97. Pardridge W. M. (1979) Regulation of amino acid availability to brain: Selective control mechanisms for glutamate, in Glutamic Acid: Advances in Biochemistry and Physiology (Filer L. J., Jr. et al., eds.), Raven, New York, pp. 125–137.Google Scholar
  98. Petty F. and Sherman A. D. (1981) A pharmacologically pertinent animal model of mania. J. Affective Disord. 3, 381–387.Google Scholar
  99. Post R. M., Rubinow D., and Ballenger J. (1984) Conditioning, sensitization, and kindling: Implications for the course of affective illness, in Neurobiology of Mood Disorders (Post R. M. and Ballenger J., eds.), Williams & Wilkins Co., Baltimore, pp. 432–466.Google Scholar
  100. Post R. M., Squillacc K. M., Sass W., and Pert A. (1977) Drug sensitization and electrical kindling, in Society for Neuroscience Abstracts (Society for Neuroscience Meeting, Anaheim, CA).Google Scholar
  101. Randrup A. and Munkvad I. (1967) Stereotyped activities produced by amphetamine in several animal species and Man. Psychophurmacologia (Berl.) 11, 300–310.Google Scholar
  102. Randrup A., Munkvad I., and Fog R. (1981) Mental and behavioural stereotypies elicited by stimulant drugs. Relation to the dopamine hypothesis of schizophrenia, mania, and depression, in Recent Advunces in Neuropsychopharmacology (Angrist B., Burrows G. D., Lader M., Lingjaerde O., Sedvall G., and Wheatley D., eds.), Pergamon, Oxford, UK, pp. 63–74.Google Scholar
  103. Robbins T. W. and Watson B. A. (1981) Effects of d-amphetamine on response repetition and win-stay behaviour in the rat, in Quuntification of Steady-State Operant Behaviour (Bradshaw C. M., Szabadi W., and Lowe C. F., eds.), Elsevier/North-Holland, Amsterdam, pp. 441–444.Google Scholar
  104. Robbins T. W., Evenden J. L., Ksir C, Reading P., Wood S, and Carli M. (1986) The effects of d-amphetamine, alpha flupenthixol and mesolimbic dopamine depletion on a test of attentional switching in the rat. Psychopharmacology 90, 72–78.PubMedGoogle Scholar
  105. Robinson T. E., Becker J. B., and Ramirez V. D. (1980) Sex differences in amphetamine-elicited rotational behavior and the lateralization of striatal dopamine in rats. Brain Res. Bull. 5, 539–545.PubMedGoogle Scholar
  106. Russell R. W. (1978) Cholinergic substrates of behavior, in Cholinergic Mechanisms and Psychopharmacology (Jenden D. J., ed.), Plenum, New York, pp. 709–731.Google Scholar
  107. Sandberg K., Sanberg P. R, Hanin I., Fisher A., and Coyle J. T. (1984) ChoIinergic lesion of the striatum impairs acquisition and retention of a passive avoidance response. Behav. Neurosci. 98, 162–165.PubMedGoogle Scholar
  108. Scheel-Kruger J. (1986) Dopamine-GABA interactions: Evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neural. Stand. (Suppl.) 107, 1–54.Google Scholar
  109. Scheel-Kruger J., Christensen A. V., and Arnt J. (1978) Muscimol differentially facilitates stereotypy but antagonizes motility induced by dopaminergic drugs: A complex GABA-dopamine interaction. Life Sci. 22, 75–84.PubMedGoogle Scholar
  110. Scheel-Kruger J., Arnt J., Magelund G., Olianas M., Przewlocka B., and Christensen A. V. (1980) Behavioural functions of GABA in basal ganglia and limbic system. Brain Res. Bull. 5(Suppl. 2), 261–267.Google Scholar
  111. Schuberth J. (1978) Central cholinergic dysfunctions in man: Clinical manifestations and approaches to diagnosis and treatment, in Cholinergic Mechanisms and Psychopharmacology (Jenden D. J., ed.), Plenum, New York, pp. 733–745.Google Scholar
  112. Simon H., Scatton B., and Le Moal M. (1980) Dopaminergic A10 neurones are involved in cognitive functions. Nature 286, 150,151.PubMedGoogle Scholar
  113. Singh M. M. and Kay S. R. (1976) Wheat gluten as a pathogenic factor in schizophrenia. Science 191, 401–404.PubMedGoogle Scholar
  114. Sloviter R. S., Damiano B. P., and Connor J. D. (1980) Relative potency of amphetamine isomers in causing the serotonin behavioral syndrome in rats. Biol. Psychiat. 15, 789–796.PubMedGoogle Scholar
  115. Spear L., Shalaby I. A., and Brick J. (1980) Chronic administration of haloperidol during development: Behavioral and psychopharmacological effects. Psychopharmacology 70, 47–58.PubMedGoogle Scholar
  116. Spear L. P., Kirstein C. L, Frambes N. A., Moody C. A., Miller J., and Spear, N. E. (1989) Neurobehavioral teratogenic effects of gestational cocaine exposure. Proc. Am. Psychol. SOC. 1, 20.Google Scholar
  117. Stevens J. R. (1975) GABA blockade, dopamine and schizophrenia: Experimental activation of the mesolimbic system. Int. J. Neural. 10, 115–127.Google Scholar
  118. Stevens J. R. (1979): Schizophrenia and dopamine regulation in the mesolimbic system. Trends Neurosci. 2, 102–105.Google Scholar
  119. Stevens J. R. and Livermore A. L., Jr. (1978) Kindling of the mesolimbic dopamine system: Animal model of psychosis. Neurology 28, 36–46.PubMedGoogle Scholar
  120. Suomi S. J., CoBins M. L., and Harlow H. F. (1973) Effects of permanent separation from mother on infant monkeys. Dtru. Psychol. 9, 376–384.Google Scholar
  121. Swerdlow N. R., Braff D. L, Geyer M. A., and Koob G. F. (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol. Psychiat. 21, 23–33.PubMedGoogle Scholar
  122. Tandon R. and Greden J. F. (1989) Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergicldopaminergic interactions in schizophrenia. Arch. Gen. Psychiut. 46, 745–753.Google Scholar
  123. Teitelbaum P., and Derks P. (1958) The effect of amphetamine on forced drinking in the rat. J. Corny. Physiol. Psychol. 51, 801–810.Google Scholar
  124. Ungerstedt, U. and Arbuthnott, G. W. (1970) Quantitative recording of behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 85–493.Google Scholar
  125. Van der Kooy D., Swerdlow N. R., and Koob G. F. (1983) Paradoxical reinforcing properties of apomorphine: Effects of nucleus accumbens and area postrema lesions. Brain Res. 259, 111–118.PubMedGoogle Scholar
  126. Van Ree J. M., Verhoeven W. M. A., De Wied D., and Van Praag H. M. (1982) The use of the synthetic peptides gamma-type endorphins in mentally ill patients, in Opioids in Mental Illness, Vol. 398, Ann. NY Acad. Sci. (Verebey K., ed.) New York Academy of Sciences, New York, pp. 478–495.Google Scholar
  127. Verebey K., ed. (1982) Opioids in Mental Illness: Theories, Clinical Observations, and Treatment Possibilities. Vol. 398, Ann. NY Acud. Sci. New York Academy of Sciences, New York.Google Scholar
  128. Wahlstrom A. and Terenius L. (1981) Endorphin hypothesis of schizophrenia. Mod. Probl. Pharmacopychiat. 17, 181–191.Google Scholar
  129. Weinberger D. R., Torrey E. F., Neophytides A. N, and Wyatt R. J. (1979) Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch. Gen. Psychiat. 36, 735–739.PubMedGoogle Scholar
  130. Weiss F., Tanzer D. J., and Ettenberg A. (1988) Opposite actions of CCK-8 on amphetamine-induced hyperlocomotion and stereotypy following intracerebroventricular and intra-accumbens injections in rats. Pharmacol. Biochem. Behav. 30, 29–33.Google Scholar
  131. Williams E. W. (1979) The effect of dietary wheat protein on rat behaviour. J. Orthomol. Psychiut. 8(2), 113–117.Google Scholar
  132. Williams E. W. (1980) d-Amphetamine behaviour in rats after a wheat protein challenge, and its reversal by naloxone hydrochloride. J. Orthomol. Psychiat. 14(4), 281–292.Google Scholar
  133. Wise R. A., Spindler J., de Wit H, and Gerber G. J, (1978) Neuroleptic-in-duced “ anhedonia” in rats: Pimozide blocks the reward quality of food. Science 201, 262–264.PubMedGoogle Scholar
  134. Wong D. F., Wagner H. N., Jr., Tune L. E, Dannals R. F., Pearlson G. D., Links J. M., Tamminga C. A., Broussole E. P., Ravert H. T., Wilson A. A., Toung J. K. T., Malat J., Williams J. A., O’Tuama L. A., Snyder S. H., Kuhar M. J., and Gjedde, A. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234, 1558–1563.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1991

Authors and Affiliations

  • Melvin Lyon
    • 1
  1. 1.Department of Psychiatry/Behavioral ScienceUniversity of Arkansas for Medical SciencesLittle Rock

Personalised recommendations