Skip to main content

Animal Models for the Symptoms of Mania

  • Protocol
Animal Models in Psychiatry, I

Part of the book series: Neuromethods ((NM,volume 18))

Abstract

Methods for modeling a human illness must have relevance to the clinical description of the abnormal condition, and they should be capable of generating an experimental condition that responds to the treatments commonly used with that disorder. In the case of mania, there are some immediate problems with definition of the syndrome. The following discussion is based on the American Psychiatric Association’s DSM-III (1980) classifications of mania and depression. However, it is suggested that this classification may be deficient in some important respects (Lyon, 1990), and any critique of neuromethods for inducing an animal state resembling mania must take these shortcomings into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Psychiatric Association (1980) DSM-III: Diagnostic and Statistical Manual of Mental Disorchs, 3rd Ed. American Psychiatric Association, Washington, DC.

    Google Scholar 

  • Andreasen N. C. and Powers P. S. (1975) Creativity and psychosis. An examination of conceptual style. Arch. Gen. Psychiat 32, 70–73.

    PubMed  CAS  Google Scholar 

  • Antelman S. M. and Chiodo L. A. (1981) Dopamine autoreceptor subsensitivity: A mechanism common to the treatment of depression and the induction of amphetamine psychosis? Biol. Psychiat. 16, 717–727.

    PubMed  CAS  Google Scholar 

  • Arnt J. and Scheel-Kruger J. (1979) GABA in the ventral tegmental area: Differential regional effects on locomotion, aggression and food intake after microinjection of GABA agonists and antagonists. Life Sci. 25, 1351–1360.

    PubMed  CAS  Google Scholar 

  • Ayhan I. and Randrup A. (1973) Behavioural and pharmacological studies on morphine-induced excitation of rats. Possible relation to brain catecholamines. Psychopharmacol. (Berl.) 29, 317–328.

    CAS  Google Scholar 

  • Balsara J. J., Jadhav J. K, Muley M. P., and Chandorkar A. G. (1979) Effect of drugs influencing central serotonergic mechanisms on methamphet-amine-induced stereotyped behavior in the rat. Psychopharmcol. 64, 303–307.

    CAS  Google Scholar 

  • Barchas J. D., Evans C., Elliott G. R., and Berger P. A. (1985) Peptide neuroregulators: The opioid system as a model. Yale J. Biol. Med. 58, 579–596.

    PubMed  CAS  Google Scholar 

  • Beckmann H. and Heinemann H. (1976) d-Amphetamin beim manischen Syndrom. Arzneim-Forschungen (Drug Res.) 26(6), 1185,1186.

    Google Scholar 

  • Berger P. A. and Barchas J. D. (1982) Studies of beta-endorphin in psychiatric patients, in Opioids in Mental Illness: Theories, Clinical Observations, and Treatment Possbilities, Vol. 398 (Verebey K, ed.) Ann. NY Acad. Sci., NY, pp. 448–459.

    Google Scholar 

  • Bleuler E. (1950) Dementia Praeccx. International University Press, NY.

    Google Scholar 

  • Bogerts B., Meertz E., and Schonfeldt-Bausch R. (1985) Basal ganglia and limbic system pathology in schizophrenia. Arch. Gen. Psychiat. 42, 784–791.

    PubMed  CAS  Google Scholar 

  • Boissier J.-R. (1975) L’utilisation des sels de lithium en therapeutique. Annales pharmaceutiques francaises 33(8-9), 447–458.

    PubMed  CAS  Google Scholar 

  • Brodie H. K. H., Murphy D. L, Goodwin P. K., and Bunney W. E., Jr. (1971) Catecholamines and mania: The effect of alpha-methyl-para-tyrosine on manic behavior and catecholamine metabolism. Clin. Pharmacol. Theraphy l2, 218.

    Google Scholar 

  • Brown T. H., Chapman P. P, Kairiss E. W, and Keenan C. L. (1988) Long-term synaptic potentiation. Science 242, 724–728.

    PubMed  CAS  Google Scholar 

  • Brown W. A. and Mueller B. (1979) Alleviation of manic symptoms with catecholamine agonists. Am. J Psychiat 136(2), 230,231.

    Google Scholar 

  • Carlsson A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuroysychopharmacol. 1(3), 179–186.

    CAS  Google Scholar 

  • Chiodo L. A. and Antelman S. M. (1980) Electroconvulsive shock: Progressive dopamine autoreceptor subsensitivity independent of repeated treatment. Science 210, 799–801.

    PubMed  CAS  Google Scholar 

  • Cooper J. R., Bloom P. E., and Roth R. H. (1986) The Biochemical Basis of Neurophamacology, 5th Ed., Oxford University Press, NY, p. 400.

    Google Scholar 

  • Coscina D. V., Seggie J., Godse D. D., and Stancer H. C. (1973) Induction of rage in rats by central injection of 6-hydroxydopamine, Pharmacol. Biochem. Behav. 1, 1–6.

    PubMed  CAS  Google Scholar 

  • Coscina D. V, Goodman J., Godse D. D., and Stancer H. C. (1975) Taming effects of handling on 6-hydroxydopamine induced rage. Pharmacol, Biochem. Behav. 3, 525–528.

    CAS  Google Scholar 

  • Costall B., Domeney A. M, and Naylor R. J. (1984a) Locomotor hyperactivity caused by dopamine infusion into the nucleus accumbens of rat brain: specificity of action. Psychoyharmacol. 82, 174–180.

    CAS  Google Scholar 

  • Costall B., Domeney A. M, and Naylor R. J. (1984b) Long-term consequences of antagonism by neuroleptics of behavioural events occurring during mesolimbic dopamine infusion. Neuropharmacol, 23, 287–294.

    CAS  Google Scholar 

  • Davies C., Sanger D. J., Steinberg H., Tomkiewicz M., and U’Prichard D. C. (1974) Lithium and alpha-methyl-y-tyrosine prevent ′manic′ activity in rodents. Psychopharmacol. (Berl.) 36, 263–274.

    CAS  Google Scholar 

  • Davis J. M., Janowsky D., Tamminga C., and Smith R. C. (1978) Cholinergic mechanisms in schizophrenia, mania and depression, in ChoZinergic Mechanisms and Psychophurmacology (Jenden D. J., ed.), Plenum, NY, pp. 805–815.

    Google Scholar 

  • Davis K. L., Berger P. A., Hollister L. E., Domaral J. R., and Barchas J. D. (1978) Cholinergic dysfunction in mania and movement disorders, in Cholinergic Mechanisms and Psychopharmacology (Jenden D. J., ed.) Plenum, NY, pp. 755–779.

    Google Scholar 

  • DeVietti T. L., Pellis S. M., Pellis V. C., and Teitelbaum P. (1985) Previous experience disrupts atropine-induced stereotyped “trapping” in rats. Behav. Neurosci. 99, 1128–1141.

    PubMed  CAS  Google Scholar 

  • de Wied D. (1979) Schizophrenia as an inborn error in the degradation of beta-endorphin—a hypothesis. Trends in Neurosci. 2, 79–82.

    Google Scholar 

  • Diaz J., Ellison G., and Matsuoka D. (1974) Opposed behavioral syndromes in rats with partial and more complete central serotonergic lesions made with 5, 6dihydroxytryptamine. Psychopharmacol, (Berl.) 37, 67–79.

    CAS  Google Scholar 

  • Dilsaver S. C. and Greden J. F. (1984) Antidepressant withdrawal-induced activation (hypomania and mania): Mechanism and theoretical significance. Brain Res. Rev. 7, 29–48.

    CAS  Google Scholar 

  • Eison M. S., Eison A. S., and Iversen S. D. (1983) Two routes of continuous amphetamine administration induce different behavioral and neurochemical effects in the rat. Neurosci. Lett., 39, 313–319.

    PubMed  CAS  Google Scholar 

  • Ellinwood E. H, Jr. and Kilbey M. M. (1977) Chronic stimulant intoxication models of psychosis, in Animal Models in Psychiatry and Neurology, (Hanin I., and Usdin E, eds.) Pergamon, Oxford, UK, pp. 61–74.

    Google Scholar 

  • Ellison G. and Bresler O. (1974) Tests of emotional behavior in rats following depletion of norepinephrine, of serotonin, or both. Psychopharmacol. (Berl.) 34, 275–288.

    CAS  Google Scholar 

  • Evenden J. L. and Robbins T. W. (1983) Increased response switching perseveration and perseveration switching following d-amphetamine in the rat. Psychopharmacol. 80, 67–73.

    CAS  Google Scholar 

  • Evetts K. D., Uretsky N. J., Iversen L. L, and Iversen S. D. (1970) Effects of 6-hydroxydopamine on CNS catecholamines, spontaneous motor activity and amphetamine-induced hyperactivity in rats. Nature 225, 961,962.

    Google Scholar 

  • Fessler R. G., Sturgeon R. D, London S. F., and Meltzer H. Y. (1982) Effects of lithium on behaviour induced by phencyclidine and amphetamine in rats. Psychopharmacol. 78, 373–376.

    CAS  Google Scholar 

  • Fibiger H. C. and Campbell B. A. (1971) The effect of parachlorophenylalanine on spontaneous locomotor activity in the rat. Neuropharmacol. 10, 25–32.

    CAS  Google Scholar 

  • Fischman M. W. and Schuster C, R. (1974) Tolerance development to chronic methamphetamine intoxication in the rhesus monkey. Pharmacol. Biochem. Behav. 2, 503–508.

    PubMed  CAS  Google Scholar 

  • Fonnum F. (1984) Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42, 1–11.

    PubMed  CAS  Google Scholar 

  • Gallistel C. R. (1986) The role of the dopaminergic projections in MPB self-stimulation. Behav. Brain Res. 20, 313–321.

    PubMed  CAS  Google Scholar 

  • Gerner R. H., Post R. M., and Bunney W. E., Jr. (1976) A dopaminergic mechanism of mania. Am.J. Psychiat. 133, 1177–1179.

    PubMed  CAS  Google Scholar 

  • Gerson SC, and Baldessarini R. J. (1980) Minireview: Motor effects of serotonin in the central nervous system. Life Sci. 27, 1435–1451.

    PubMed  CAS  Google Scholar 

  • Gilies P. H, Leviton A, and Dooling E. C. (1983) The Developing Human Brain, Growth and Eyidkmiological Neuropathology, Wright PSG, Boston, MA.

    Google Scholar 

  • Goddard G. V., McIntyre D. C., and Leech C. K (1969) A permanent change in brain function resulting from daily electrical stimulation. Exptl. Neural. 25, 295–301.

    CAS  Google Scholar 

  • Grahame-Smith D. G. (1971) Studies in vivo on the relationships between brain tryptophan, brain 5-HT synthesis, and hyperactivity in rats treated with a MAO inhibitor and 2-tryptophan. J. Neurochem. l8, 1053–1066.

    Google Scholar 

  • Green A. R. and Grahame-Smith D. G. (1974) The role of brain dopamine in the hyperactivity syndrome produced by increased Li-hydroxy-tryptamine synthesis in rats. Neuropharmacol, 13, 949–959.

    CAS  Google Scholar 

  • Harrison J. M. and Lyon M, (1957) The role of the septal nuclei and the components of the fornix in the behavior of the rat. J. Corny. Neural. 108, 121–137.

    CAS  Google Scholar 

  • Heikkila R. E., Hess A., and Duvoisin R. C. (1984) Dopaminergic neurotoxicity of l-methyl4phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224, 1451–1453.

    PubMed  CAS  Google Scholar 

  • Herberg L. J. and Franklin K. B. J. (1976) The ′stimulant′ action of tryptophan-monoamine oxidase inhibitor combinations: Suppression of self-stimulation. Neuropharmacol. 15, 349–351.

    CAS  Google Scholar 

  • Hill R. T. (1970) Facilitation of conditioned reinforcement as a mechanism for psychomotor stimulation, in Amphetamines and Related Compounds, (Costa E. and Garattini S, eds.) Raven, NY, pp. 791–795.

    Google Scholar 

  • Hiramatsu K., Kameyama T, Saitoh O, Niwa S., Rymar K., and Itoh K. (1984) Correlations of event-related potentials with schizophrenic deficits in information processing and hemispheric dysfunction. Biol. Psychol. 19, 281–294.

    PubMed  CAS  Google Scholar 

  • Huberman H. S., Eison M. S., Bryan K., and Eilison G. (1977) A slow-release pellet for chronic amphetamine administration. Eur. J. Pharmacol. 45, 237–240.

    PubMed  CAS  Google Scholar 

  • Iversen S. D. (1977) Striatal function and stereotyped behaviour, in The Psychobiology of the Striatum (Cools A. R., Lohman A. H. M., and van der Bercken J. H. L., eds.), North-Holland, Amsterdam, pp. 99–118.

    Google Scholar 

  • Iversen S. D. (1986) Animal models of schizophrenia, in The Psychopharmacolony and Treatment of Schizophrenia (Bradley P. B. and Hirsch S. R., eds.), Oxford University Press, Oxford, UK.

    Google Scholar 

  • Jackson D. M., Bailey R. C., Christie M. J., Crisp E. A., and Skerrit J. H. (1981) Long-term d-amphetamine in rats: Lack of change in postsynaptic dopamine receptor sensitivity. Psychopharmacol. 73, 276–280.

    CAS  Google Scholar 

  • Jacobs B. L. (1976) An animal behaviour model for studying central serotonergic synapses. Life Sci. 19, 777–786.

    PubMed  CAS  Google Scholar 

  • Jacobs B. L., Trulson M. E, and Stem W. C. (1976) An animal behavior model for studying the action of LSD and related hallucinogens. Science 194, 741–743.

    PubMed  CAS  Google Scholar 

  • Jakob H. and Beckmann H. (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenia. J. Neurotrans. 65, 303–326.

    CAS  Google Scholar 

  • Janowsky D. S., El-Yousef M. K, Davis J. M, Hubbard B., and Sekerke H. J. (1972a) A cholinergic adrenergic hypothesis of mania and depression. Lancet 2, 632–635.

    PubMed  CAS  Google Scholar 

  • Janowsky D. S., El-Yousef M. K., Davis J. M, and Sekerke H. J. (1972) Cholinergic antagonism of methylphenidate-induced stereotyped behavior. Psychopharmacologia (Berl.) 27, 295–303.

    CAS  Google Scholar 

  • Janowsky D. S., El-Yousef M. K., Davis J. M., and Sekerke H. J. (1973) Para-sympathetic suppression of manic symptoms by physostigmine. Arch. Gen. Psychiat. 28, 542–547.

    PubMed  CAS  Google Scholar 

  • Jones G. H., Hemandez T. D., and Robbins T. W. (1987) Isolation-rearing impairs the acquisition of schedule-induced polydipsia. Abst. Soc. Neurosci. 13, 405.

    Google Scholar 

  • Jones G. H., Marsden C. A., and Robbins T. W. (1989) Hypersensitivity to reward-related stimuli and to intra-accumbens d-amphetamine following social deprivation in rats. Soc. Neurosci. Abst. Vol. 15(1), p. 412.

    Google Scholar 

  • Joyce E. M. and Iversen S. D. (1979) The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci. Lett. 14, 207–212.

    PubMed  CAS  Google Scholar 

  • Kantak K. M. (1988) Magnesium deficiency alters aggressive behavior and catecholamine function. Behav. Neurosci. 102, 303–331.

    Google Scholar 

  • Karson C. N, Dykman R. A., and Paige S. R. (1990) Blink rates in schizophrenia. Schiz. Bull. 16(2), 345–354.

    CAS  Google Scholar 

  • Katz R. J. (1982) Morphine-and endorphin-induced behavioral activation in the mouse: Implications for mania and some recent pharmacogenetic studies, in Opioids in Mental Illness, vol. 398 (Verebey K, ed.), Ann. NY Acad. Sci., NY, pp. 291–300.

    Google Scholar 

  • Kelly P. H. and Iversen L. L. (1975) LSD as an agonist at mesolimbic dopamine receptors. Psychopharmacologia (Berl.) 45, 221–224.

    CAS  Google Scholar 

  • Kelly P. H., Seviour P. W, and Iversen S. D. (1975) Amphetamine and apomorphine response in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res. 94, 507–522.

    PubMed  CAS  Google Scholar 

  • Kovelman J. A. and Scheibel A. B. (1984) A neurohistological correlate of schizophrenia. Biol. Psychiat. 19, 1601–1621.

    PubMed  CAS  Google Scholar 

  • Kuczenski R. and Segal D. (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J. Neurosci. 9(6), 2051–2065.

    PubMed  CAS  Google Scholar 

  • Leith N. J. and Barrett R. J. (1980) Effects of chronic amphetamine or reserpine on self-stimulation responding: Animal model of depression? Psychopharmacol. 72, 9–15.

    CAS  Google Scholar 

  • Lorens S. A., Guldberg H. C., Hole K, Kohler C., and Srebro B. (1976) Activity, avoidance learning and regional 5hydroxytryptamine following intra-brain stem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat. Brain Res. 108, 97–113.

    PubMed  CAS  Google Scholar 

  • Lyon M. (1990) Animal models of mania and schizophrenia, in Behaviourul Models in Psychopharmacology (Willner P., ed.), Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lyon M. and Barr C. E. (in press) Possible interactions of obstetrical complications and abnormal fetal brain development in schizophrenia, in Fetal Neural Developnent and Adult Schizophrenia (Mednick S. A., Cannon T. D., Barr C. E., and Lyon M., eds.), Cambridge University Press, NY.

    Google Scholar 

  • Lyon M. and Nielsen E. B. (1979) Psychosis and drug induced stereotypies, in Psychopathology in Animals: Research and Clinical implications (Keehn J. D., ed.), Academic, NY, pp. 103–142.

    Google Scholar 

  • Lyon M. and Randrup A. (1972) The dose-response effect of amphetamine upon avoidance behavior in the rat seen as a function of increasing stereotypy. Psvchopharmacologia (Berl.) 23, 324–347.

    Google Scholar 

  • Lyon M. and Robbins T. W. (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects, in Current Develoyments in Psychopharmacology, Vo1 2. (Essman W. and Valzelli L., eds.), Spectrum, NY, pp. 79–163.

    Google Scholar 

  • Lyon N. and Gerlach J. (1988) Perseverative structuring of responses by schizophrenic and affective disorder patients. J. Psychiat. Res. 23, 261–277.

    Google Scholar 

  • Lyon N., Mejsholm B., and Lyon M. (1986) Stereotyped responding in schizophrenic outpatients: Cross-cultural confirmation of perseverative switching on a two-choice task. J. Psychiat. Res. 20, 137–150.

    PubMed  CAS  Google Scholar 

  • Mailman R. B., Lewis M. H, and Kilts C. D. (1981) Animal models related to developmental disorders: Theoretical and pharmacological analyses. Appl. Res. Ment. Retard. 2, 1–12.

    PubMed  CAS  Google Scholar 

  • Marsden C. A. and Curzon G. (1976) Studies on the behavioural effects of tryptophan and p-chlorophenylalanine. Neuropharmacology 15, 165–171.

    PubMed  CAS  Google Scholar 

  • Martin-Iverson M. T., Stahl S. M., and Iversen S. D. (1988) Chronic administration of a selective dopamine D-2 agonist: factors determining behavioral tolerance and sensitization. Psychopharmacol. 95, 534–539.

    CAS  Google Scholar 

  • McGinity J. W. and Mehta C. S. (1978) Preparation and evaluation of a sustained morphine delivery system in rats. Pharmacol, Biochem. Behav. 9, 705.

    CAS  Google Scholar 

  • Mehrabian A. (1986) Arousal-reducing effects of chronic stimulant use. Motivation and Emotion 10(1), 1–10.

    Google Scholar 

  • Meltzer H. L., Taylor R. M., Platman S. R., and Fieve R. R. (1969) Rubidium: A potential modifier of affect and behaviour. Nature 223, 321–322.

    PubMed  CAS  Google Scholar 

  • Miller F. P., Cox R. H., Snodgrass W. R., and Maikel R. P. (1970) Comparative effects of Îł-chlorophenylalanine, Îł-chloroamphetamine, and Îł-chloro-N methylamphetamine on rat brain norepinephrine, serotonin, and 5-hydroxyindole-3-acetic acid. Biochem. Pharmacol. 19, 435–442.

    PubMed  CAS  Google Scholar 

  • Murphy D. L. (1977) Animal models for mania, in Animal Models in Psychiatry and Neurology (Hanin I. and Usdin E, eds.), Pergamon, NY, pp. 211–222.

    Google Scholar 

  • Nakamura K and Thoenen H. (1972) Increased iritability—A permanent behavior change induced in the rat by intraventricular administration of 6-hydroxydopamine. Psychopharmacologiu (Berl.) 24, 359–372.

    CAS  Google Scholar 

  • Nielsen E. B. (1981) Rapid decline of stereotyped behavior in rats during constant one week administration of amphetamine via implanted ALZET® osmotic minipumps. Pharmacol. Biochem. Behav. 15, 161–165.

    PubMed  CAS  Google Scholar 

  • Nielsen E. B., Lyon M., and Ellison G. (1983) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days. Possible relevance to amphetamine psychosis. J. Nerv. Ment. Dis. 171, 222–233.

    PubMed  CAS  Google Scholar 

  • Norton S., Mullenix P., and Culver B. (1976) Comparison of the structure of hyperactive behavior in rats after brain damage from X-irradiation, carbon monoxide and pallidal lesions. Brain Res. 116, 49–67.

    PubMed  CAS  Google Scholar 

  • Pavlinac D., Langer R., Lenhard L., and Deftos L. (1979) Magnesium in affective disorders. Biol. Psychiat. 14(4), 657–661.

    PubMed  CAS  Google Scholar 

  • Petty P. and Sherman A. D. (1981) A pharmacologically pertinent animal model of mania. J. Affect. Dis. 3, 381–387.

    PubMed  CAS  Google Scholar 

  • Phillips A. G., Carter D. A., and Fibiger H. C. (1976) Dopaminergic substrates of intracranial self-stimulation in the caudate-putamen. Brain Res. 104, 221–232.

    PubMed  CAS  Google Scholar 

  • Poitou P., Boulu R., and Bohuon C. (1975) Effect of lithium and other drugs on the amphetamine chlordiazepoxide hyperactivity in mice. Experientia 15(1), 99–101.

    Google Scholar 

  • Post R. M. (1977) Approaches to rapidly cycling manic-depressive illness, in Animal Models in Psychiatry and Neurology (Hanin I. and Usdin E., eds.), Pergamon, NY, pp. 201–210.

    Google Scholar 

  • Post R. M., Squillace K. M, Sass W., and Pert A. (1981) The effect of amygdaloid kindling on spontaneous and cocaine-induced motor activity and lidocaine seizures. Psychopharmacology 72, 189–196.

    PubMed  CAS  Google Scholar 

  • Post R. M., Rubinow D., and Ballenger J. (1984) Conditioning, sensitization, and kindling: Implications for the course of affective illness, in Neurobiology of Mood Disorders (Post R. M. and Ballenger J., eds.), Williams and Wilkins, Baltimore, pp. 432–466.

    Google Scholar 

  • Post R. M., Weiss S. R. B., and Pert A. (1988) Cocaine-induced behavioral sensitization and kindling: Implications for the emergence of psychopathology and seizures, in The Mesocorticolimbic Doyamine System (Kalivas P. W. and Nemeroff C. B., eds.), Ann. NY Acad. Sci., NY, pp. 292–308.

    Google Scholar 

  • Randrup A. and Munkvad I. (1968): Behavioural stereotypies induced by pharmacological agents. Pharmakopychiatri und Neuropsychopharmakologi 1, 18–26.

    Google Scholar 

  • Randrup A., Munkvad I., and Fog R. (1981) Mental and behavioural stereotypies elicited by stimulant drugs. Relation to the dopamine hypothesis of schizophrenia, mania, and depression, in Recent Advances in Neuropsychopharmacology (Angrist B., Burrows G. D., Lader M., Lingjaerde O., Sedvall G., and Wheatley D, eds.), Pergamon, Oxford, UK, pp. 63–74.

    Google Scholar 

  • Rastogi R. B., Merali Z., and Singhal R. L. (1977) Cadmium alters behaviour and biosynphetic capacity for catecholamine and serotonin in neonatal rat brain. J. Neurochem. 28, 789–794.

    PubMed  CAS  Google Scholar 

  • Robbins T. W. (1975) The potentiation of conditioned reinforcement by psychomotor stimulant drugs: A test of Hill’s hypothesis. Psychopharmacologia (Berl.) 45, 103–112.

    CAS  Google Scholar 

  • Robbins T. W. (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature (Land.) 254, 57–59.

    Google Scholar 

  • Robbins T. W. (1978) The acquisition of responding with conditioned reinforcement: Effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacol. 58, 79–87.

    CAS  Google Scholar 

  • Robbins T. W. and Sahakian B. J. (1980) Animal models of mania, in Maniu: An Evolving Concept (Belmaker R. and van Praag H, eds.), Spectrum, NY, pp. 143–216.

    Google Scholar 

  • Robbins T. W., Watson B. A., Gaskin M., and Ennis C. (1983) Contrasting interactions of pipradrol, d-amphetamine, cocaine, cocaine analogues, apomorphine and other drugs with conditioned reinforcement. Psychopharmacol. 80, 113–119.

    CAS  Google Scholar 

  • Rubin E. H. and Zorumski C. F. (1985) Limbic seizures, kindling and psychosis: A link between neurobiology and clinical psychiatry. Comp. Ther. 1, 54–58.

    Google Scholar 

  • Scheel-Kruger J. (1986) Dopamine-GABA interactions: Evidence that GAB A transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurol. Scand. (Suppl.) 107, 1–54.

    CAS  Google Scholar 

  • Scheel-Kruger J., Arnt J., Magelund G., Olianas M., Przewlocka B., and Christensen A. V. (1980) Behavioural functions of GABA in basal ganglia and limbic system. Brain Res. Bull. 5(2), 261–267.

    Google Scholar 

  • Scheel-Kruger J., Magelund G, and Olianas M. C. (1981) Role of GABA in the striatal output system: Globus pallidus, nucleus entopeduncularis, substantia nigra and nucleus subthalamicus, in GABA and the Basal Ganglia, Advances in Biochemistry and Psychopharmacology, Vol. 30 (Di Chiara G. and Gessa G. L., eds.), pp. 165–186.

    Google Scholar 

  • Schiørring E. (1971) Amphetamine induced selective stimulation of certain behaviour items with concurrent inhibition of others in an open-field test with rats. Behaviour 39, 1–17.

    PubMed  Google Scholar 

  • Schwartz B. (1986) Allocation of complex sequential operants on multiple and concurrent schedules of reinforcement. J. Exp. Anal. Behav. 45, 283–295.

    PubMed  CAS  Google Scholar 

  • Schwartz J. M., Ksir C, Koob G. P., and Bloom F. E. (1982) Changes in locomotor response to beta-endorphin microinfusion during and after opiate abstinence syndrome—A proposal for a model of the onset of mania. Psychiat. Res. 7, 153–161.

    CAS  Google Scholar 

  • Silbergeld E. K. and Goldberg A. M. (1974) Lead-induced behavioral dysfunction: An animal model of hyperactivity. Exptl. Neural. 42, 146–157.

    CAS  Google Scholar 

  • Stevens J. R. (1975) GABA blockade, dopamine and schizophrenia: Experimental activation of the mesolimbic system. Int. J. Neural. 10, 115–127.

    CAS  Google Scholar 

  • Stevens J. R. (1979) Schizophrenia and dopamine regulation in the mesolimbic system. Trends Neurosci. 2, 102–105.

    Google Scholar 

  • Sudilovsky A. (1975) Effects of disulfiram on the amphetamine-induced behavioral syndrome in the cat as a model of psychosis. National Institute on Drug Abuse Research, Monograph Series 3, pp. 109–135.

    CAS  Google Scholar 

  • Taylor J, R. and Robbins T. W. (1984) Enhanced behavioral control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84, 405–412.

    PubMed  CAS  Google Scholar 

  • Thompson D. M. (1973) Repeated acquisition of response sequences: Effects of d-amphetamine and chlorpromazine. Pharmacol. Biochem. Behav. 2, 741–746.

    Google Scholar 

  • U’Prichard D. C. and Steinberg H. (1972) Selective effects of lithium on two forms of spontaneous activity. Br. J. Pharmacol. 44, 349,350.

    Google Scholar 

  • Van de Kar L. D. and Lorens S. A. (1979) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and medial midbrain raphe nuclei. Brain Res. 162, 45–54.

    PubMed  Google Scholar 

  • Van Ree J. M., Verhoeven W. M. A., de Wied D., and van Praag H. M. (1982) The use of synthetic peptides y-type endorphins in mentally ill patients, in Opioids in Mental Illness: Theories, Clinical Obsewations, and Treatment Possibilities, Vol. 398 (Verebey K., ed.), Ann. NY Acad. Sci., NY, pp. 487–495.

    Google Scholar 

  • Villablanca J. R., Harris C. M, Burgess J. W, and de Andres I. (1984) Reassessing morphine effects in cats: I. Specific behavioral responses in intact and unilaterally brain-lesioned arimals. Pharmacol. Biochem, Behav. 21, 913–921.

    CAS  Google Scholar 

  • Vogel R. and Annau Z. (1973) An operant discrimination task allowing variability of reinforced response patterning. J. Exp. Anal. Behav. 20, 1–6.

    PubMed  CAS  Google Scholar 

  • Wake A. and Wada J. (1975) Frontal cortical kindling in cats. Can. J. Neural. Sci. 2, 493–496.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 The Humana Press Inc.

About this protocol

Cite this protocol

Lyon, M. (1991). Animal Models for the Symptoms of Mania. In: Boulton, A.A., Baker, G.B., Martin-Iverson, M.T. (eds) Animal Models in Psychiatry, I. Neuromethods, vol 18. Humana Press. https://doi.org/10.1385/0-89603-198-5:197

Download citation

  • DOI: https://doi.org/10.1385/0-89603-198-5:197

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-198-2

  • Online ISBN: 978-1-59259-623-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics