Animal Models for the Symptoms of Mania

  • Melvin Lyon
Part of the Neuromethods book series (NM, volume 18)


Methods for modeling a human illness must have relevance to the clinical description of the abnormal condition, and they should be capable of generating an experimental condition that responds to the treatments commonly used with that disorder. In the case of mania, there are some immediate problems with definition of the syndrome. The following discussion is based on the American Psychiatric Association’s DSM-III (1980) classifications of mania and depression. However, it is suggested that this classification may be deficient in some important respects (Lyon, 1990), and any critique of neuromethods for inducing an animal state resembling mania must take these shortcomings into account.


Nucleus Accumbens Ventral Tegmental Area Guide Cannula Corpus Striatum Electroconvulsive Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. American Psychiatric Association (1980) DSM-III: Diagnostic and Statistical Manual of Mental Disorchs, 3rd Ed. American Psychiatric Association, Washington, DC.Google Scholar
  2. Andreasen N. C. and Powers P. S. (1975) Creativity and psychosis. An examination of conceptual style. Arch. Gen. Psychiat 32, 70–73.PubMedGoogle Scholar
  3. Antelman S. M. and Chiodo L. A. (1981) Dopamine autoreceptor subsensitivity: A mechanism common to the treatment of depression and the induction of amphetamine psychosis? Biol. Psychiat. 16, 717–727.PubMedGoogle Scholar
  4. Arnt J. and Scheel-Kruger J. (1979) GABA in the ventral tegmental area: Differential regional effects on locomotion, aggression and food intake after microinjection of GABA agonists and antagonists. Life Sci. 25, 1351–1360.PubMedGoogle Scholar
  5. Ayhan I. and Randrup A. (1973) Behavioural and pharmacological studies on morphine-induced excitation of rats. Possible relation to brain catecholamines. Psychopharmacol. (Berl.) 29, 317–328.Google Scholar
  6. Balsara J. J., Jadhav J. K, Muley M. P., and Chandorkar A. G. (1979) Effect of drugs influencing central serotonergic mechanisms on methamphet-amine-induced stereotyped behavior in the rat. Psychopharmcol. 64, 303–307.Google Scholar
  7. Barchas J. D., Evans C., Elliott G. R., and Berger P. A. (1985) Peptide neuroregulators: The opioid system as a model. Yale J. Biol. Med. 58, 579–596.PubMedGoogle Scholar
  8. Beckmann H. and Heinemann H. (1976) d-Amphetamin beim manischen Syndrom. Arzneim-Forschungen (Drug Res.) 26(6), 1185,1186.Google Scholar
  9. Berger P. A. and Barchas J. D. (1982) Studies of beta-endorphin in psychiatric patients, in Opioids in Mental Illness: Theories, Clinical Observations, and Treatment Possbilities, Vol. 398 (Verebey K, ed.) Ann. NY Acad. Sci., NY, pp. 448–459.Google Scholar
  10. Bleuler E. (1950) Dementia Praeccx. International University Press, NY.Google Scholar
  11. Bogerts B., Meertz E., and Schonfeldt-Bausch R. (1985) Basal ganglia and limbic system pathology in schizophrenia. Arch. Gen. Psychiat. 42, 784–791.PubMedGoogle Scholar
  12. Boissier J.-R. (1975) L’utilisation des sels de lithium en therapeutique. Annales pharmaceutiques francaises 33(8-9), 447–458.PubMedGoogle Scholar
  13. Brodie H. K. H., Murphy D. L, Goodwin P. K., and Bunney W. E., Jr. (1971) Catecholamines and mania: The effect of alpha-methyl-para-tyrosine on manic behavior and catecholamine metabolism. Clin. Pharmacol. Theraphy l2, 218.Google Scholar
  14. Brown T. H., Chapman P. P, Kairiss E. W, and Keenan C. L. (1988) Long-term synaptic potentiation. Science 242, 724–728.PubMedGoogle Scholar
  15. Brown W. A. and Mueller B. (1979) Alleviation of manic symptoms with catecholamine agonists. Am. J Psychiat 136(2), 230,231.Google Scholar
  16. Carlsson A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuroysychopharmacol. 1(3), 179–186.Google Scholar
  17. Chiodo L. A. and Antelman S. M. (1980) Electroconvulsive shock: Progressive dopamine autoreceptor subsensitivity independent of repeated treatment. Science 210, 799–801.PubMedGoogle Scholar
  18. Cooper J. R., Bloom P. E., and Roth R. H. (1986) The Biochemical Basis of Neurophamacology, 5th Ed., Oxford University Press, NY, p. 400.Google Scholar
  19. Coscina D. V., Seggie J., Godse D. D., and Stancer H. C. (1973) Induction of rage in rats by central injection of 6-hydroxydopamine, Pharmacol. Biochem. Behav. 1, 1–6.PubMedGoogle Scholar
  20. Coscina D. V, Goodman J., Godse D. D., and Stancer H. C. (1975) Taming effects of handling on 6-hydroxydopamine induced rage. Pharmacol, Biochem. Behav. 3, 525–528.Google Scholar
  21. Costall B., Domeney A. M, and Naylor R. J. (1984a) Locomotor hyperactivity caused by dopamine infusion into the nucleus accumbens of rat brain: specificity of action. Psychoyharmacol. 82, 174–180.Google Scholar
  22. Costall B., Domeney A. M, and Naylor R. J. (1984b) Long-term consequences of antagonism by neuroleptics of behavioural events occurring during mesolimbic dopamine infusion. Neuropharmacol, 23, 287–294.Google Scholar
  23. Davies C., Sanger D. J., Steinberg H., Tomkiewicz M., and U’Prichard D. C. (1974) Lithium and alpha-methyl-y-tyrosine prevent ′manic′ activity in rodents. Psychopharmacol. (Berl.) 36, 263–274.Google Scholar
  24. Davis J. M., Janowsky D., Tamminga C., and Smith R. C. (1978) Cholinergic mechanisms in schizophrenia, mania and depression, in ChoZinergic Mechanisms and Psychophurmacology (Jenden D. J., ed.), Plenum, NY, pp. 805–815.Google Scholar
  25. Davis K. L., Berger P. A., Hollister L. E., Domaral J. R., and Barchas J. D. (1978) Cholinergic dysfunction in mania and movement disorders, in Cholinergic Mechanisms and Psychopharmacology (Jenden D. J., ed.) Plenum, NY, pp. 755–779.Google Scholar
  26. DeVietti T. L., Pellis S. M., Pellis V. C., and Teitelbaum P. (1985) Previous experience disrupts atropine-induced stereotyped “trapping” in rats. Behav. Neurosci. 99, 1128–1141.PubMedGoogle Scholar
  27. de Wied D. (1979) Schizophrenia as an inborn error in the degradation of beta-endorphin—a hypothesis. Trends in Neurosci. 2, 79–82.Google Scholar
  28. Diaz J., Ellison G., and Matsuoka D. (1974) Opposed behavioral syndromes in rats with partial and more complete central serotonergic lesions made with 5, 6dihydroxytryptamine. Psychopharmacol, (Berl.) 37, 67–79.Google Scholar
  29. Dilsaver S. C. and Greden J. F. (1984) Antidepressant withdrawal-induced activation (hypomania and mania): Mechanism and theoretical significance. Brain Res. Rev. 7, 29–48.Google Scholar
  30. Eison M. S., Eison A. S., and Iversen S. D. (1983) Two routes of continuous amphetamine administration induce different behavioral and neurochemical effects in the rat. Neurosci. Lett., 39, 313–319.PubMedGoogle Scholar
  31. Ellinwood E. H, Jr. and Kilbey M. M. (1977) Chronic stimulant intoxication models of psychosis, in Animal Models in Psychiatry and Neurology, (Hanin I., and Usdin E, eds.) Pergamon, Oxford, UK, pp. 61–74.Google Scholar
  32. Ellison G. and Bresler O. (1974) Tests of emotional behavior in rats following depletion of norepinephrine, of serotonin, or both. Psychopharmacol. (Berl.) 34, 275–288.Google Scholar
  33. Evenden J. L. and Robbins T. W. (1983) Increased response switching perseveration and perseveration switching following d-amphetamine in the rat. Psychopharmacol. 80, 67–73.Google Scholar
  34. Evetts K. D., Uretsky N. J., Iversen L. L, and Iversen S. D. (1970) Effects of 6-hydroxydopamine on CNS catecholamines, spontaneous motor activity and amphetamine-induced hyperactivity in rats. Nature 225, 961,962.Google Scholar
  35. Fessler R. G., Sturgeon R. D, London S. F., and Meltzer H. Y. (1982) Effects of lithium on behaviour induced by phencyclidine and amphetamine in rats. Psychopharmacol. 78, 373–376.Google Scholar
  36. Fibiger H. C. and Campbell B. A. (1971) The effect of parachlorophenylalanine on spontaneous locomotor activity in the rat. Neuropharmacol. 10, 25–32.Google Scholar
  37. Fischman M. W. and Schuster C, R. (1974) Tolerance development to chronic methamphetamine intoxication in the rhesus monkey. Pharmacol. Biochem. Behav. 2, 503–508.PubMedGoogle Scholar
  38. Fonnum F. (1984) Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42, 1–11.PubMedGoogle Scholar
  39. Gallistel C. R. (1986) The role of the dopaminergic projections in MPB self-stimulation. Behav. Brain Res. 20, 313–321.PubMedGoogle Scholar
  40. Gerner R. H., Post R. M., and Bunney W. E., Jr. (1976) A dopaminergic mechanism of mania. Am.J. Psychiat. 133, 1177–1179.PubMedGoogle Scholar
  41. Gerson SC, and Baldessarini R. J. (1980) Minireview: Motor effects of serotonin in the central nervous system. Life Sci. 27, 1435–1451.PubMedGoogle Scholar
  42. Gilies P. H, Leviton A, and Dooling E. C. (1983) The Developing Human Brain, Growth and Eyidkmiological Neuropathology, Wright PSG, Boston, MA.Google Scholar
  43. Goddard G. V., McIntyre D. C., and Leech C. K (1969) A permanent change in brain function resulting from daily electrical stimulation. Exptl. Neural. 25, 295–301.Google Scholar
  44. Grahame-Smith D. G. (1971) Studies in vivo on the relationships between brain tryptophan, brain 5-HT synthesis, and hyperactivity in rats treated with a MAO inhibitor and 2-tryptophan. J. Neurochem. l8, 1053–1066.Google Scholar
  45. Green A. R. and Grahame-Smith D. G. (1974) The role of brain dopamine in the hyperactivity syndrome produced by increased Li-hydroxy-tryptamine synthesis in rats. Neuropharmacol, 13, 949–959.Google Scholar
  46. Harrison J. M. and Lyon M, (1957) The role of the septal nuclei and the components of the fornix in the behavior of the rat. J. Corny. Neural. 108, 121–137.Google Scholar
  47. Heikkila R. E., Hess A., and Duvoisin R. C. (1984) Dopaminergic neurotoxicity of l-methyl4phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224, 1451–1453.PubMedGoogle Scholar
  48. Herberg L. J. and Franklin K. B. J. (1976) The ′stimulant′ action of tryptophan-monoamine oxidase inhibitor combinations: Suppression of self-stimulation. Neuropharmacol. 15, 349–351.Google Scholar
  49. Hill R. T. (1970) Facilitation of conditioned reinforcement as a mechanism for psychomotor stimulation, in Amphetamines and Related Compounds, (Costa E. and Garattini S, eds.) Raven, NY, pp. 791–795.Google Scholar
  50. Hiramatsu K., Kameyama T, Saitoh O, Niwa S., Rymar K., and Itoh K. (1984) Correlations of event-related potentials with schizophrenic deficits in information processing and hemispheric dysfunction. Biol. Psychol. 19, 281–294.PubMedGoogle Scholar
  51. Huberman H. S., Eison M. S., Bryan K., and Eilison G. (1977) A slow-release pellet for chronic amphetamine administration. Eur. J. Pharmacol. 45, 237–240.PubMedGoogle Scholar
  52. Iversen S. D. (1977) Striatal function and stereotyped behaviour, in The Psychobiology of the Striatum (Cools A. R., Lohman A. H. M., and van der Bercken J. H. L., eds.), North-Holland, Amsterdam, pp. 99–118.Google Scholar
  53. Iversen S. D. (1986) Animal models of schizophrenia, in The Psychopharmacolony and Treatment of Schizophrenia (Bradley P. B. and Hirsch S. R., eds.), Oxford University Press, Oxford, UK.Google Scholar
  54. Jackson D. M., Bailey R. C., Christie M. J., Crisp E. A., and Skerrit J. H. (1981) Long-term d-amphetamine in rats: Lack of change in postsynaptic dopamine receptor sensitivity. Psychopharmacol. 73, 276–280.Google Scholar
  55. Jacobs B. L. (1976) An animal behaviour model for studying central serotonergic synapses. Life Sci. 19, 777–786.PubMedGoogle Scholar
  56. Jacobs B. L., Trulson M. E, and Stem W. C. (1976) An animal behavior model for studying the action of LSD and related hallucinogens. Science 194, 741–743.PubMedGoogle Scholar
  57. Jakob H. and Beckmann H. (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenia. J. Neurotrans. 65, 303–326.Google Scholar
  58. Janowsky D. S., El-Yousef M. K, Davis J. M, Hubbard B., and Sekerke H. J. (1972a) A cholinergic adrenergic hypothesis of mania and depression. Lancet 2, 632–635.PubMedGoogle Scholar
  59. Janowsky D. S., El-Yousef M. K., Davis J. M, and Sekerke H. J. (1972) Cholinergic antagonism of methylphenidate-induced stereotyped behavior. Psychopharmacologia (Berl.) 27, 295–303.Google Scholar
  60. Janowsky D. S., El-Yousef M. K., Davis J. M., and Sekerke H. J. (1973) Para-sympathetic suppression of manic symptoms by physostigmine. Arch. Gen. Psychiat. 28, 542–547.PubMedGoogle Scholar
  61. Jones G. H., Hemandez T. D., and Robbins T. W. (1987) Isolation-rearing impairs the acquisition of schedule-induced polydipsia. Abst. Soc. Neurosci. 13, 405.Google Scholar
  62. Jones G. H., Marsden C. A., and Robbins T. W. (1989) Hypersensitivity to reward-related stimuli and to intra-accumbens d-amphetamine following social deprivation in rats. Soc. Neurosci. Abst. Vol. 15(1), p. 412.Google Scholar
  63. Joyce E. M. and Iversen S. D. (1979) The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci. Lett. 14, 207–212.PubMedGoogle Scholar
  64. Kantak K. M. (1988) Magnesium deficiency alters aggressive behavior and catecholamine function. Behav. Neurosci. 102, 303–331.Google Scholar
  65. Karson C. N, Dykman R. A., and Paige S. R. (1990) Blink rates in schizophrenia. Schiz. Bull. 16(2), 345–354.Google Scholar
  66. Katz R. J. (1982) Morphine-and endorphin-induced behavioral activation in the mouse: Implications for mania and some recent pharmacogenetic studies, in Opioids in Mental Illness, vol. 398 (Verebey K, ed.), Ann. NY Acad. Sci., NY, pp. 291–300.Google Scholar
  67. Kelly P. H. and Iversen L. L. (1975) LSD as an agonist at mesolimbic dopamine receptors. Psychopharmacologia (Berl.) 45, 221–224.Google Scholar
  68. Kelly P. H., Seviour P. W, and Iversen S. D. (1975) Amphetamine and apomorphine response in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res. 94, 507–522.PubMedGoogle Scholar
  69. Kovelman J. A. and Scheibel A. B. (1984) A neurohistological correlate of schizophrenia. Biol. Psychiat. 19, 1601–1621.PubMedGoogle Scholar
  70. Kuczenski R. and Segal D. (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J. Neurosci. 9(6), 2051–2065.PubMedGoogle Scholar
  71. Leith N. J. and Barrett R. J. (1980) Effects of chronic amphetamine or reserpine on self-stimulation responding: Animal model of depression? Psychopharmacol. 72, 9–15.Google Scholar
  72. Lorens S. A., Guldberg H. C., Hole K, Kohler C., and Srebro B. (1976) Activity, avoidance learning and regional 5hydroxytryptamine following intra-brain stem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat. Brain Res. 108, 97–113.PubMedGoogle Scholar
  73. Lyon M. (1990) Animal models of mania and schizophrenia, in Behaviourul Models in Psychopharmacology (Willner P., ed.), Cambridge University Press, Cambridge, UK.Google Scholar
  74. Lyon M. and Barr C. E. (in press) Possible interactions of obstetrical complications and abnormal fetal brain development in schizophrenia, in Fetal Neural Developnent and Adult Schizophrenia (Mednick S. A., Cannon T. D., Barr C. E., and Lyon M., eds.), Cambridge University Press, NY.Google Scholar
  75. Lyon M. and Nielsen E. B. (1979) Psychosis and drug induced stereotypies, in Psychopathology in Animals: Research and Clinical implications (Keehn J. D., ed.), Academic, NY, pp. 103–142.Google Scholar
  76. Lyon M. and Randrup A. (1972) The dose-response effect of amphetamine upon avoidance behavior in the rat seen as a function of increasing stereotypy. Psvchopharmacologia (Berl.) 23, 324–347.Google Scholar
  77. Lyon M. and Robbins T. W. (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects, in Current Develoyments in Psychopharmacology, Vo1 2. (Essman W. and Valzelli L., eds.), Spectrum, NY, pp. 79–163.Google Scholar
  78. Lyon N. and Gerlach J. (1988) Perseverative structuring of responses by schizophrenic and affective disorder patients. J. Psychiat. Res. 23, 261–277.Google Scholar
  79. Lyon N., Mejsholm B., and Lyon M. (1986) Stereotyped responding in schizophrenic outpatients: Cross-cultural confirmation of perseverative switching on a two-choice task. J. Psychiat. Res. 20, 137–150.PubMedGoogle Scholar
  80. Mailman R. B., Lewis M. H, and Kilts C. D. (1981) Animal models related to developmental disorders: Theoretical and pharmacological analyses. Appl. Res. Ment. Retard. 2, 1–12.PubMedGoogle Scholar
  81. Marsden C. A. and Curzon G. (1976) Studies on the behavioural effects of tryptophan and p-chlorophenylalanine. Neuropharmacology 15, 165–171.PubMedGoogle Scholar
  82. Martin-Iverson M. T., Stahl S. M., and Iversen S. D. (1988) Chronic administration of a selective dopamine D-2 agonist: factors determining behavioral tolerance and sensitization. Psychopharmacol. 95, 534–539.Google Scholar
  83. McGinity J. W. and Mehta C. S. (1978) Preparation and evaluation of a sustained morphine delivery system in rats. Pharmacol, Biochem. Behav. 9, 705.Google Scholar
  84. Mehrabian A. (1986) Arousal-reducing effects of chronic stimulant use. Motivation and Emotion 10(1), 1–10.Google Scholar
  85. Meltzer H. L., Taylor R. M., Platman S. R., and Fieve R. R. (1969) Rubidium: A potential modifier of affect and behaviour. Nature 223, 321–322.PubMedGoogle Scholar
  86. Miller F. P., Cox R. H., Snodgrass W. R., and Maikel R. P. (1970) Comparative effects of γ-chlorophenylalanine, γ-chloroamphetamine, and γ-chloro-N methylamphetamine on rat brain norepinephrine, serotonin, and 5-hydroxyindole-3-acetic acid. Biochem. Pharmacol. 19, 435–442.PubMedGoogle Scholar
  87. Murphy D. L. (1977) Animal models for mania, in Animal Models in Psychiatry and Neurology (Hanin I. and Usdin E, eds.), Pergamon, NY, pp. 211–222.Google Scholar
  88. Nakamura K and Thoenen H. (1972) Increased iritability—A permanent behavior change induced in the rat by intraventricular administration of 6-hydroxydopamine. Psychopharmacologiu (Berl.) 24, 359–372.Google Scholar
  89. Nielsen E. B. (1981) Rapid decline of stereotyped behavior in rats during constant one week administration of amphetamine via implanted ALZET® osmotic minipumps. Pharmacol. Biochem. Behav. 15, 161–165.PubMedGoogle Scholar
  90. Nielsen E. B., Lyon M., and Ellison G. (1983) Apparent hallucinations in monkeys during around-the-clock amphetamine for seven to fourteen days. Possible relevance to amphetamine psychosis. J. Nerv. Ment. Dis. 171, 222–233.PubMedGoogle Scholar
  91. Norton S., Mullenix P., and Culver B. (1976) Comparison of the structure of hyperactive behavior in rats after brain damage from X-irradiation, carbon monoxide and pallidal lesions. Brain Res. 116, 49–67.PubMedGoogle Scholar
  92. Pavlinac D., Langer R., Lenhard L., and Deftos L. (1979) Magnesium in affective disorders. Biol. Psychiat. 14(4), 657–661.PubMedGoogle Scholar
  93. Petty P. and Sherman A. D. (1981) A pharmacologically pertinent animal model of mania. J. Affect. Dis. 3, 381–387.PubMedGoogle Scholar
  94. Phillips A. G., Carter D. A., and Fibiger H. C. (1976) Dopaminergic substrates of intracranial self-stimulation in the caudate-putamen. Brain Res. 104, 221–232.PubMedGoogle Scholar
  95. Poitou P., Boulu R., and Bohuon C. (1975) Effect of lithium and other drugs on the amphetamine chlordiazepoxide hyperactivity in mice. Experientia 15(1), 99–101.Google Scholar
  96. Post R. M. (1977) Approaches to rapidly cycling manic-depressive illness, in Animal Models in Psychiatry and Neurology (Hanin I. and Usdin E., eds.), Pergamon, NY, pp. 201–210.Google Scholar
  97. Post R. M., Squillace K. M, Sass W., and Pert A. (1981) The effect of amygdaloid kindling on spontaneous and cocaine-induced motor activity and lidocaine seizures. Psychopharmacology 72, 189–196.PubMedGoogle Scholar
  98. Post R. M., Rubinow D., and Ballenger J. (1984) Conditioning, sensitization, and kindling: Implications for the course of affective illness, in Neurobiology of Mood Disorders (Post R. M. and Ballenger J., eds.), Williams and Wilkins, Baltimore, pp. 432–466.Google Scholar
  99. Post R. M., Weiss S. R. B., and Pert A. (1988) Cocaine-induced behavioral sensitization and kindling: Implications for the emergence of psychopathology and seizures, in The Mesocorticolimbic Doyamine System (Kalivas P. W. and Nemeroff C. B., eds.), Ann. NY Acad. Sci., NY, pp. 292–308.Google Scholar
  100. Randrup A. and Munkvad I. (1968): Behavioural stereotypies induced by pharmacological agents. Pharmakopychiatri und Neuropsychopharmakologi 1, 18–26.Google Scholar
  101. Randrup A., Munkvad I., and Fog R. (1981) Mental and behavioural stereotypies elicited by stimulant drugs. Relation to the dopamine hypothesis of schizophrenia, mania, and depression, in Recent Advances in Neuropsychopharmacology (Angrist B., Burrows G. D., Lader M., Lingjaerde O., Sedvall G., and Wheatley D, eds.), Pergamon, Oxford, UK, pp. 63–74.Google Scholar
  102. Rastogi R. B., Merali Z., and Singhal R. L. (1977) Cadmium alters behaviour and biosynphetic capacity for catecholamine and serotonin in neonatal rat brain. J. Neurochem. 28, 789–794.PubMedGoogle Scholar
  103. Robbins T. W. (1975) The potentiation of conditioned reinforcement by psychomotor stimulant drugs: A test of Hill’s hypothesis. Psychopharmacologia (Berl.) 45, 103–112.Google Scholar
  104. Robbins T. W. (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature (Land.) 254, 57–59.Google Scholar
  105. Robbins T. W. (1978) The acquisition of responding with conditioned reinforcement: Effects of pipradrol, methylphenidate, d-amphetamine, and nomifensine. Psychopharmacol. 58, 79–87.Google Scholar
  106. Robbins T. W. and Sahakian B. J. (1980) Animal models of mania, in Maniu: An Evolving Concept (Belmaker R. and van Praag H, eds.), Spectrum, NY, pp. 143–216.Google Scholar
  107. Robbins T. W., Watson B. A., Gaskin M., and Ennis C. (1983) Contrasting interactions of pipradrol, d-amphetamine, cocaine, cocaine analogues, apomorphine and other drugs with conditioned reinforcement. Psychopharmacol. 80, 113–119.Google Scholar
  108. Rubin E. H. and Zorumski C. F. (1985) Limbic seizures, kindling and psychosis: A link between neurobiology and clinical psychiatry. Comp. Ther. 1, 54–58.Google Scholar
  109. Scheel-Kruger J. (1986) Dopamine-GABA interactions: Evidence that GAB A transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurol. Scand. (Suppl.) 107, 1–54.Google Scholar
  110. Scheel-Kruger J., Arnt J., Magelund G., Olianas M., Przewlocka B., and Christensen A. V. (1980) Behavioural functions of GABA in basal ganglia and limbic system. Brain Res. Bull. 5(2), 261–267.Google Scholar
  111. Scheel-Kruger J., Magelund G, and Olianas M. C. (1981) Role of GABA in the striatal output system: Globus pallidus, nucleus entopeduncularis, substantia nigra and nucleus subthalamicus, in GABA and the Basal Ganglia, Advances in Biochemistry and Psychopharmacology, Vol. 30 (Di Chiara G. and Gessa G. L., eds.), pp. 165–186.Google Scholar
  112. Schiørring E. (1971) Amphetamine induced selective stimulation of certain behaviour items with concurrent inhibition of others in an open-field test with rats. Behaviour 39, 1–17.PubMedGoogle Scholar
  113. Schwartz B. (1986) Allocation of complex sequential operants on multiple and concurrent schedules of reinforcement. J. Exp. Anal. Behav. 45, 283–295.PubMedGoogle Scholar
  114. Schwartz J. M., Ksir C, Koob G. P., and Bloom F. E. (1982) Changes in locomotor response to beta-endorphin microinfusion during and after opiate abstinence syndrome—A proposal for a model of the onset of mania. Psychiat. Res. 7, 153–161.Google Scholar
  115. Silbergeld E. K. and Goldberg A. M. (1974) Lead-induced behavioral dysfunction: An animal model of hyperactivity. Exptl. Neural. 42, 146–157.Google Scholar
  116. Stevens J. R. (1975) GABA blockade, dopamine and schizophrenia: Experimental activation of the mesolimbic system. Int. J. Neural. 10, 115–127.Google Scholar
  117. Stevens J. R. (1979) Schizophrenia and dopamine regulation in the mesolimbic system. Trends Neurosci. 2, 102–105.Google Scholar
  118. Sudilovsky A. (1975) Effects of disulfiram on the amphetamine-induced behavioral syndrome in the cat as a model of psychosis. National Institute on Drug Abuse Research, Monograph Series 3, pp. 109–135.Google Scholar
  119. Taylor J, R. and Robbins T. W. (1984) Enhanced behavioral control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84, 405–412.PubMedGoogle Scholar
  120. Thompson D. M. (1973) Repeated acquisition of response sequences: Effects of d-amphetamine and chlorpromazine. Pharmacol. Biochem. Behav. 2, 741–746.Google Scholar
  121. U’Prichard D. C. and Steinberg H. (1972) Selective effects of lithium on two forms of spontaneous activity. Br. J. Pharmacol. 44, 349,350.Google Scholar
  122. Van de Kar L. D. and Lorens S. A. (1979) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and medial midbrain raphe nuclei. Brain Res. 162, 45–54.PubMedGoogle Scholar
  123. Van Ree J. M., Verhoeven W. M. A., de Wied D., and van Praag H. M. (1982) The use of synthetic peptides y-type endorphins in mentally ill patients, in Opioids in Mental Illness: Theories, Clinical Obsewations, and Treatment Possibilities, Vol. 398 (Verebey K., ed.), Ann. NY Acad. Sci., NY, pp. 487–495.Google Scholar
  124. Villablanca J. R., Harris C. M, Burgess J. W, and de Andres I. (1984) Reassessing morphine effects in cats: I. Specific behavioral responses in intact and unilaterally brain-lesioned arimals. Pharmacol. Biochem, Behav. 21, 913–921.Google Scholar
  125. Vogel R. and Annau Z. (1973) An operant discrimination task allowing variability of reinforced response patterning. J. Exp. Anal. Behav. 20, 1–6.PubMedGoogle Scholar
  126. Wake A. and Wada J. (1975) Frontal cortical kindling in cats. Can. J. Neural. Sci. 2, 493–496.Google Scholar

Copyright information

© The Humana Press Inc. 1991

Authors and Affiliations

  • Melvin Lyon
    • 1
  1. 1.Department of Psychiatry/Behavioral ScienceUniversity of Arkansas for Medical SciencesLittle Rock

Personalised recommendations