Skip to main content

Multisite Optical Measurement of Membrane Potential

  • Protocol
Neurophysiological Techniques

Part of the book series: Neuromethods ((NM,volume 14))

Abstract

An optical measurement of membrane potential using a molecular probe might be beneficial in a variety of circumstances. “Such a probe could, we believe, provide a powerful new technique for measuring membrane potential in systems where, for reasons of scale, topology, or complexity, the use of electrodes is inconvenient or impossible” (B. M. Salzberg, personal sentence). The possibility of using optical methods was first suggested in 1968 by the discovery of potential-dependent changes in intrinsic optical properties of squid giant axons (Cohen et al., 1968). Shortly thereafter, (1968) found stimulus-dependent changes in fluorescence of stained axons, and in 1971 a search was begun (Cohen et al., 1971) for dyes that would give signals large enough to be useful for monitoring membrane potential. By now more than 1000 dyes have been tested for their ability to act as molecular transducers of changes in membrane potential into changes in three types of optical signals: absorption, birefringence, and fluorescence. This screening effort has resulted in the discovery of dyes with a signal-to-noise ratio 100 times larger than was available from any signal in 1971. Several of these dyes (see, e.g., Fig. 1) have been used to monitor changes in potential in a variety of preparations. For reviews, see (1978), (1979), (1983), (1988), and (1988). An earlier discussion of methods was published (Cohen and Lesher, 1986).

Structures of several dyes that have been used to monitor membrane potential. The merocyanine (XVII) was the dye used in the experiments illustrated in Figs. 3 and 4. Dye XVII and the oxonol XXV are available from Dr. A. S. Waggoner, Center for Fluorescence, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, as WW375 and WW781. Dye XVII is available commercially as NK 2495 from Nippon Kankoh-Shikiso Kenkyusho Co. Ltd. The oxonol, RH155, and styryl, RH414, are available from Amiram Grinvald, Department of Neurobiology, Weizmann Institute, Rehovot, Israel. RH414is available commercially as dye 1112 from Molecular Probes, Junction City, OR. RH155 is available as NK3041

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blasdel G. G. and Salama G. (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Boyde A., Petran, M. and Hadravsky, M. (1983) Tandem scanning reflected light microscopy of internal features in whole bone and tooth samples. J. Microsc. 132, 1–7.

    Article  Google Scholar 

  • Boyle M. B. and Cohen L. B. (1980) Birefringence signals that monitor membrane potential in cell bodies of molluscan neurons. Fed. Proc.39, 2130.

    Google Scholar 

  • Braddick H. J. J. (1960) Photoelectric photometry. Rep. Prog. Physics 23, 154–175.

    Article  CAS  Google Scholar 

  • Cohen L. B. and Lesher S. (1986) Optical monitoring of membrane potential: methods of multisite optical measurement. Soc. Gen. Physiol. Ser. 40, 71–99.

    PubMed  CAS  Google Scholar 

  • Cohen L. B. and Salzberg B. M. (1978) Optical measurement of membrane potential. Rev. Physiol. Biochem. Pharmacol. 83, 35–88.

    PubMed  CAS  Google Scholar 

  • Cohen L. B., Davila H. V. and Waggoner A. S. (1971) Changes in axon fluorescence. Biol. Bull. 141, 382.

    Google Scholar 

  • Cohen L. B., Keynes R. D. and Hille B. (1968) Light scattering and birefringence changes during nerve activity. Nature 218, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Cohen L. B., Landowne D., Shrivastav B B. and Ritchie J. M. (1970) Changes in fluorescence of squid axons during activity. Biol. Bull. 139, 418–419.

    Google Scholar 

  • Cohen L. B., Salzberg B. M., Davila H. V., Ross W. N., Landowne D., Waggoner A. S. and Wang C H. (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Membr. Biol. 19, 1–36.

    Article  PubMed  CAS  Google Scholar 

  • Conti F. (1975) Fluorescent probes in nerve membranes. Ann. Rev. Biophys. Bioeng. 4, 287–310.

    Article  CAS  Google Scholar 

  • Conti F. and Tasaki I. (1970) Changes in extrinsic fluorescence in squid axons during voltage clamp. Science 169, 1322–1324.

    Article  PubMed  CAS  Google Scholar 

  • Conti F., Tasaki I. and Wanke E. (1971) Fluorescence signals in ANS-stained squid axons during voltage clamp Biophys. J. 8, 58–70.

    CAS  Google Scholar 

  • Dainty J. C. (1984) Laser Speckle and Related Phenomena (Springer-Verlag, New York).

    Google Scholar 

  • Dasheiff R. M. (1988) Fluorescent voltage sensitive dyes: Applications for neurophysiology. J. Clin. Neurophysiol. 5, 211–235.

    Article  PubMed  CAS  Google Scholar 

  • Davidovitz, P. and Egger M. D. (1969) Scanning laser microscope. Nature 223, 831.

    Article  Google Scholar 

  • Davila H. V., Cohen L. B., Salzberg, B. M. and Shrivastav B. B. (1974) Changes in ANS and TNS fluorescence in giant axons from Loligo. J. Membr. Biol. 15, 29–46.

    Article  CAS  Google Scholar 

  • Dillon S. and Morad M. (1981) Scanning of the electrical activity of the heart using a laser beam with acousto-optics modulators. Science 214, 453–456.

    Article  PubMed  CAS  Google Scholar 

  • Egger M. D. and Petran M (1967) New reflected light microscope for viewing unstained brain and ganglion cells. Science 157, 305–307.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg B. and Berezin Y. (1984) Surface potential on purple membranes and its sidedness studied by resonance Raman dye probe Biophys. J. 45, 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A. and Farber I. C. (1981) Optical recording of calcium action potentials from growth cones of cultured neurons with a laser micro-beam. Science 212, 1164–1167.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A., Ross W. N. and Farber I. (1981a) Simultaneous optical measurements of electrical activity from multiple sites on processes of cultured neurons. Proc. Natl. Acud. Sci. USA 78, 3245–3249.

    Article  CAS  Google Scholar 

  • Grinvald A., Cohen L. B., Lesher S. and Boyle M. B. (1981b) Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. j. Neurophysiol. 45, 829–840.

    PubMed  CAS  Google Scholar 

  • Grinvald A., Hildesheim R., Farber I. C. and Anghster L. (1982a) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Btophys. J. 39, 301–308.

    Article  CAS  Google Scholar 

  • Grinvald A., Manker A. and Segal M. (1982a). Visualization of the spread of electrical activity in rat hippocampal slices by voltage-sensitive optical probes. J. Physml.(Land.) 333, 269–291.

    CAS  Google Scholar 

  • Grinvald A., Frostig R. D., Lieke E. and Hildesheim R. (1988) Optical imaging of neuronal activity. Physiol. Rev. 68, 1285–1366.

    PubMed  CAS  Google Scholar 

  • Grinvald A., Lieke E., Frostig R. D., Gilbert C. D. and Wiesel T. N. (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Gupta R. K., Salzberg B. M., Grinvald A., Cohen L. B., Kamino K., Lesher S., Boyle M. B., Waggoner A. S. and Wang C. H. (1981) Improvements in optical methods for measuring rapid changes in membrane potential. J. Membr. Biol. 58, 123–137.

    Article  PubMed  CAS  Google Scholar 

  • Hamer F. M. (1964) The Cyunme Dyes and Related Compounds (Wiley, New York).

    Google Scholar 

  • Hill B. C. and Courtney K. R. (1985) Optical monitoring of myocardial conduction: Observations of reentry and examples of lidocaine action. Biophys. J. 47, 496a.

    Google Scholar 

  • Hirota A., Kamino K., Komuro H., Sakai T. and Yada T. (1985) Optical studies of excitation-contraction coupling in the early embryonic chick heart. j. Physiol. (Land.) 366, 89–106.

    CAS  Google Scholar 

  • Kauer J. S. (1988) Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature 331, 166–168.

    Article  PubMed  CAS  Google Scholar 

  • Kauer J. S., Senseman D. M. and Cohen L. B. (1987) Odor elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage sensitive dye. Bruzn Res. 418, 255–261.

    Article  CAS  Google Scholar 

  • Kazan B. and Knoll M. (1968). Electronic Image Storage (Academic, New York).

    Google Scholar 

  • Lev-Ram V. and Grinvald A. (1986) Ca2+ and K+-dependent communication between central nervous system myelinated axons and oli-godendrocytes revealed by voltage-sensitive dyes. Proc. Natl. Acad. Set. USA 83, 6651–6655.

    Article  CAS  Google Scholar 

  • Loew L. M., Cohen L. B., Salzberg B. M., Obard A. L. and Bezanilla F. (1985) Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys. J, 47, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • London J, A., Zecevic D. and Cohen L. B. (1987) Simultaneous optical recording of activity from many neurons during feeding in Nuvanax. J. Neuroscr. 7, 649–661.

    CAS  Google Scholar 

  • Malmstadt H. V., Enke C. G., Crouch S. R. and Harlick G. (1974) Electronic Measurements for Scientists (Benjamin, Menlo Park, CA

    Google Scholar 

  • Nakajima S. and Gilai A. (1980) Action potentials of isolated single muscle fibers recorded by potential sensitive dyes.. J. Gen. Physiol. 76, 729–750.

    Article  PubMed  CAS  Google Scholar 

  • Orbach H. S. and Cohen L. B. (1983) Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system. J Neurosci. 3, 2251–2262.

    PubMed  CAS  Google Scholar 

  • Orbach H. S., Cohen L. B. and Grinvald A. (1985) Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci 5, 1886–1895.

    PubMed  CAS  Google Scholar 

  • Parsons T. D., Kleinfeld D., Raccuia-Behling G. F. and Salzberg B. M. (1989a). Recording of the electrical activity of synaptically interacting Aplysia neurons in culture using potentiometric probes. Biophys. J., in press.

    Google Scholar 

  • Parsons T. D., Obaid A. L., Kleinfeld D. and Salzberg B. M. (1989b). Continuous long-term optical recording from identified Aplysza neurons in culture. Biophys. J. 55, 174a.

    Google Scholar 

  • Patrick J, Valeur B., Monnerie L. and Changeux J. P. (1971) Changes in intrinsic fluorescence intensity of the electroplax membrane during electrical excitation. J. Membr. Biol. 5, 102–120.

    Article  CAS  Google Scholar 

  • Petran M. and Hadravsky M. (1966) Czechoslovakian patent 7720.

    Google Scholar 

  • Ross W. N. and Krauthamer V. (1984) Optical measurements of potential changes in axons and processes of neurons of a barnacle ganglion. J. Neurosci. 4, 659–672.

    PubMed  CAS  Google Scholar 

  • Ross W. N. and Reichardt L. F. (1979) Species-specific effects on the optical signals of voltage-sensitive dyes.J Membr. Biol. 48, 343–356.

    Article  PubMed  CAS  Google Scholar 

  • Ross W. N., Salzberg B. M., Cohen L. B. and Davila H. V. (1974) A large change in dye absorption during the action potential. Biophys. J. 14, 983–986.

    Article  PubMed  CAS  Google Scholar 

  • Ross W. N., Salzberg B. M., Cohen L. B., Grinvald A., Davila H. V., Waggoner A. S. and Wang C. H. (1977) Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: optical measurement of membrane potential. J. Membr. Biol 33, 141–183.

    Article  PubMed  CAS  Google Scholar 

  • Russell J. T., Beeler T. and Martonosi A. (1979) Optical probe responses on sarcoplasmic reticulum. Merocyanine and oxonol dyes. J. Biol. Chem. 254, 2047–2052.

    PubMed  CAS  Google Scholar 

  • Sakai T., Hirota A., Komuro H., Fujii S. and Kamino K. (1985) Optical recording of membrane potential responses from early embryonic chick ganglia using voltage-sensitive dyes. Brain Res. 349, 39–51.

    PubMed  CAS  Google Scholar 

  • Salzberg B. M. (1983) Optical recording of electrical activity in neurons using molecular probes, in Current Methods in Cellular Neurobiology (Barker J. L. and McKelvy J. F., eds.), Wiley, New York, pp.139–187.

    Google Scholar 

  • Salzberg B. M. and Bezanilla F. (1983) An optical determination of the serves resistance in Loligo. J. Gen. Physiol. 82, 807–817.

    Article  CAS  Google Scholar 

  • Salzberg B. M., Davila H. V. and Cohen L. B. (1973). Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246, 508–509.

    Article  PubMed  CAS  Google Scholar 

  • Salzberg B. M., Obaid A. L., Senseman D. M. and Gainer H. (1983) Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306, 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Salzberg B. M., Grinvald A., Cohen L. B., Davila H. V. and Ross W. N. (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J. Neurophysiol. 40, 1281–1291.

    PubMed  CAS  Google Scholar 

  • Senseman D. M. and Salzberg B. M. (1980) Electrical activity in an exo-crine gland: optical recording with a potentiometric dye. Science 208, 1269–1271.

    Article  PubMed  CAS  Google Scholar 

  • Sharnoff M., Henry R. W. and Belleza D. M. J. (1978a) Holographic visualization of the nerve impulse. Biophys. J. 21, 109A.

    Google Scholar 

  • Sharnoff M., Romer, N. J., Cohen L. B., Salzberg B. M., Boyle M. B. and Lesher S. (1978b) Differential holography of squid grant axons during excitation and rest (abstract). Biol. Bull. 155, 465–466.

    Google Scholar 

  • Shaw R (1979) Photographic detectors. Appl. Optics Optical Eng. 7, 121–154.

    Article  CAS  Google Scholar 

  • Sherebrin M. H. (1972) Changes in infrared spectrum of nerve during excitation. Nature 235, 122–124.

    CAS  Google Scholar 

  • Sherebrin M. H., MacClement B. A. E. and Franko A. J. (1972) Electric-field induced shifts in the infrared spectrum of conducting nerve axons. Brophys. J. 12, 977–989.

    Article  CAS  Google Scholar 

  • Shrager P., Chiu S. Y., Ritchie J. M., Zecevic D. and Cohen L. B. (1987) Optical measurement of propagation in normal and demyelinated frog nerve. Biophys. J 51, 351–355.

    Article  PubMed  CAS  Google Scholar 

  • Tank D. and Ahmed Z. (1985) Multiple-site monitoring of activity in cultured neurons. Biophys. J. 47, 476A.

    Google Scholar 

  • Tasaki I., Watanabe A. and Hallett A. (1972) Fluorescence of squid axon membrane labeled with hydrophobic probes. J. Membr. Biol. 8, 109–132.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I., Watanabe A., Sandlin R. and Carnay L. (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc. Natl. Acad. Sci. USA 61, 883–888.

    Article  PubMed  CAS  Google Scholar 

  • Waggoner A. S. (1979) Dye indicators of membrane potential. Ann. Rev. Biophys. Bioeng. 8, 47–68.

    Article  CAS  Google Scholar 

  • Waggoner A. S. and Grinvald A. (1977) Mechanisms of rapid optical changes of potential sensitive dyes. Ann. NY Acad. Sci. 303, 217–241.

    PubMed  CAS  Google Scholar 

  • Zecevic D., Wu J.Y., Cohen L. B., London J. A., Höpp H. P. and Xiao C (1989) Hundreds of cells in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex, J. Neurosc. 9, 3681–3689.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc , Clifton, NJ

About this protocol

Cite this protocol

Höpp, HP. et al. (1990). Multisite Optical Measurement of Membrane Potential. In: Boulton, A.A., Baker, G.B., Vanderwolf, C.H. (eds) Neurophysiological Techniques. Neuromethods, vol 14. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-160-8:193

Download citation

  • DOI: https://doi.org/10.1385/0-89603-160-8:193

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-160-9

  • Online ISBN: 978-1-59259-619-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics