Skip to main content

Physical and Biochemical Methods for Analysis of Fluid Compartments

  • Protocol
The Neuronal Microenvironment

Part of the book series: Neuromethods ((NM,volume 9))

Abstract

The fluid environment of the central nervous system comprises the following compartments: Tissue fluid, consisting of (1) the extracellular compartment and (2) the intracellular compartment Cerebrospinal fluid Vascular compartment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K., Abe T., Klatzo I., and Spatz M. (1980) Effect of endogenous central nervous system depressants in ischemic cerebral edema of gerbils. Adv. Neurol. 28, 429–443.

    PubMed  CAS  Google Scholar 

  • Adachi C., Mihara H., and Matsuo O. (1974) Analysis of fluid in capsules implanted into dog brain. Jpn. J. Physiol. 24, 59–71.

    PubMed  CAS  Google Scholar 

  • Ahmed N. and Van Harreveld A. (1969) The iodide space in rabbit brain. J. Physzol. 204, 31–50.

    CAS  Google Scholar 

  • Aladjova N. A. (1964) Slow electrical processes in the brain. Prog. Brain Res. 7, 156–206.

    Google Scholar 

  • Anderson D. K. and Heisey S. R. (1975) Creatinme, potassium, and calcium flux from chicken cerebrospinal fluid. Am. J. Physlol. 228, 415–419.

    CAS  Google Scholar 

  • Avezaat C. J. J., Van Eilndhoven J. H. M., and Wyper D. J. (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J. Neurol. Neurosurg. Psychiat. 42, 687–700.

    PubMed  CAS  Google Scholar 

  • Baethmann A., Steude V., Horsch S., and Brendel W. (1969) Eimge Ergebnisse zur Bestimmung des Extrazellularraumes (EZR) in ZNS von Ratten. Pflugers Arch. 307, Rll3–114.

    Google Scholar 

  • Bakay L. (1970) The extracellular space in brain tumours. II. The sucrose space. Brain 93, 659–708.

    Google Scholar 

  • Bakay L., Kurland R. J., Parrish R. G., Lee J. C., Peng R. J., and Bartkowski H. M. (1975) Nuclear magnetic resonance studies in normal and edematous brain tissue. Exp. Brain. Res. 23, 241–248.

    PubMed  CAS  Google Scholar 

  • Bartkowski H. M., Bederson J., Nishimura M., Moon K., and Puts L. H. (1984) Nuclear magnetic resonance imaging and spectroscopy in experimental brain edema. Magn. Res. Med. 1, 98–99.

    Google Scholar 

  • Berendsen H. J. C. (1975) Specific Interactions of Water With Biopolymers, in Water, A Comprehensive Treatise vol. 5 Water in Dtsperse Systems (Franks F., ed.) Plenum, New York.

    Google Scholar 

  • Bering E. A. and Sato O. (1963) Hydrocephalus: Changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J. Neurosurg. 20, 1050–1063.

    PubMed  Google Scholar 

  • Borgesen S. E. and Glerris F. (1982) The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105, 65–86

    PubMed  CAS  Google Scholar 

  • Bovee W., Huisman P., and Smidt J. (1974) Tumor detection and nuclear magnetic resonance. J. Natl. Cancer Inst. 52, 595–598.

    PubMed  CAS  Google Scholar 

  • Bradbury M. V. and Davson H. (1965) The transport of potassium between blood, cerebrospinal fluid and brain. J. Physiol. 181, 151–174.

    PubMed  CAS  Google Scholar 

  • Brooks R. A. and DiChiro G. (1975) Theory of image reconstruction in computed tomography. Radiology 117, 561–572.

    PubMed  CAS  Google Scholar 

  • Brooks R. A. and DiChiro G. (1976) Principles of computer-assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys. Med. Biol. 21, 689–732.

    PubMed  CAS  Google Scholar 

  • Brooks R. A., DiChiro G., and Keller M. R. (1980) Explanation of cerebral white-grey contrast in computed tomography. J. Comput. Assist. Tomogr. 4, 489–491.

    PubMed  CAS  Google Scholar 

  • Bydder G. M. and Kreel L. (1979) The temperature dependence of computed tomography attenuation values. J. Comput. Assis. Tomogr. 3, 506–510.

    CAS  Google Scholar 

  • Calhoun M. C., Hurt H. D., Eaton H. D., Rousseau J. E., and Hall R. C. (1967) Rates of formation and absorption of cerebrospmal fluid in Holstein male calves. Bull. Storrs. Agricult. Exp Statton. 401, 3–22.

    Google Scholar 

  • Chaussy L., Baethmann A., and Lubitz W. (1981) Electrical Sizing of Nerve and Glia Cells in the Study of Cell Volume Regulation, in Cerebral Microcirculation and Metabolism (Cervos-Navarro J. and Fritschka E., eds.) Raven, New York.

    Google Scholar 

  • Cho Z. H. (1974) General views on 3-D image reconstruction and computerized transverse axial tomography. IEEE Truns Nucl. Sci. NS-21, 44–54.

    Google Scholar 

  • Clasen R. A., Cooke P. M., Pandolfi S., Carnecki G., and Bryar G. (1965) Hypertonic urea in experimental cerebral edema. Arch. Neural. 12, 424–434.

    CAS  Google Scholar 

  • Clasen R. A., Sky-Peck H. H., Pandolfi S., Laing I., and Hass G. M. (1967) The Chemistry of Isolated Edema Fluid in Experimental Cerebral Injury. in Brain Edema (Klatzo I., and Seitelberger F., eds.) Springer, New York.

    Google Scholar 

  • Clasen R. A., Huckman M. S., Pandolfi S., Lamg I., and Jacobs J. (1976) Computed Tomography of Vasogemc Cerebral Edema, in Dynamics of Brain Edema (Pappius H. M. and Feindel W., eds.) Springer, New York.

    Google Scholar 

  • Clasen R. A., Huckman M. S., VonRoenn K. A., Pandolfi S., Laing I., and Lobick J. J. (1981) A correlative study of computed tomography and histology in human and experimental vasogenic cerebral edema. J. Comput. Assist. Tomogr. 5, 313–327.

    PubMed  CAS  Google Scholar 

  • Cole K. S. (1929) Electric impedance of suspensions of Arbacia eggs. J. Gen. Physiol. 12, 37–54.

    Google Scholar 

  • Cottam G. L., Vasek A., and Lusted D. (1972) Water proton relaxation rates in various tissues. Res. Commun. Chem. Path. Pharmacol. 4, 495–502.

    CAS  Google Scholar 

  • Cserr H. F. (1965) Potassium exchange between cerebrospinal fluid, plasma and brain. Am. J. Physiol. 209, 1219–1226.

    PubMed  CAS  Google Scholar 

  • Cutler R. W. P., Page L., Galicich J., and Watters G. V. (1968a) Formation and absorption of cerebrospinal fluid in man. Brain 91, 707–719.

    PubMed  CAS  Google Scholar 

  • Cutler R. W. P., Robinson R. J., and Lorenzo A. V. (1968b) Cerebrospinal fluid transport of sulfate in the cat. Am. J. Physiol. 214, 448–454.

    PubMed  CAS  Google Scholar 

  • Damadian R. (1971) Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153.

    PubMed  CAS  Google Scholar 

  • Darrow K. K. (1953) Magnetic resonance. I. Nuclear magnetic resonance. Bell. Syst. Techn. J. 32, 74–99.

    Google Scholar 

  • Davson H. and Spaziani E. (1959) The blood-brain barrier and the extracellular space of brain. J. Physiol. 149, 135–143.

    PubMed  CAS  Google Scholar 

  • DiMattio J., Hochwald G. M., Malhan C., and Wald A. (1975) Effects of changes in serum osmolarity on bulk flow of fluid into cerebral ventricles and on brain water content. Pflugers Arch. 359, 253–264.

    PubMed  CAS  Google Scholar 

  • Ducrot H., Thomasset A., Joly R., Jungers P., Eyraud C., and Lenoir J., (1970) Dktermination du volume des liquides extracellulaires chez l’’homme par la mesure de l’’impédance corporelle totale. Presse Med. 78, 2269–2272

    PubMed  CAS  Google Scholar 

  • Eisenberg H. M., MC Lennan J. E., and Welch K. (1974) Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg. 41, 20–28.

    PubMed  CAS  Google Scholar 

  • Elliott K. A. C. and Jasper H. (1949) Measurement of experimentally induced brain swelling and shrinkage. Am. J. Physiol. 157, 122–129.

    PubMed  CAS  Google Scholar 

  • Fenske A., Samii M., Reulen H. J., and Hey O. (1973) Extracellular space and electrolyte distribution in cortex and white matter of dog brain in cold-induced oedema. Acta Neurocha. 28, 81–94.

    CAS  Google Scholar 

  • Fenstermacher J. D., Li C. L., and Levm V. A. (1970) Extracellular space of the cerebral cortex of normothermic and hypothermic cats. Exp. Neurol. 27, 101–114.

    PubMed  CAS  Google Scholar 

  • Ferszt R., Neu S., Cervos-Navarro J., and Sperner J. (1978) The spreading of focal brain edema induced by ultraviolet irradiation. Acta Neuropathol. 42, 223–229.

    PubMed  CAS  Google Scholar 

  • Ferszt R., Hahm H., and Cervos-Navarro J. (1980) Measurement of the specific gravity of the brain as a tool in brain edema research. Adv Neurol. 28, 15–26.

    PubMed  CAS  Google Scholar 

  • Franck G. (1970) Echanges catiomques au niveau des neurones et des cellules gliales du cerveau. Arch. Int. Phystol. Biochem. 78, 613–866.

    CAS  Google Scholar 

  • Fricke H. (1924) A mathematical treatment of the electrical conductivity of colloids and cell suspensions. J Gen. Physiol. 6, 375–384.

    PubMed  CAS  Google Scholar 

  • Fricke H. (1929) The electric conductivity of disperse systems. J. Gen. Physiol. 6, 741–746.

    Google Scholar 

  • Freygang W. H. and Landau W. M. (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J. Cell. Camp. Physiol. 45, 377–391.

    Google Scholar 

  • Fujimoto T., Walker J. T., Spatz M., and Klatzo I. (1976) Pathophysiologic Aspects of Ischemic Edema, in Dynamzcs of Brain Edema (Pappius H. M. and Feindel W., eds.) Springer, New York.

    Google Scholar 

  • Fullerton G. D. (1982) Basic concepts for nuclear magnetic resonance imaging. Magnet. Reson. Imag. 1, 39–55.

    CAS  Google Scholar 

  • Fullerton G. D. and Blanco E. (1981) Fundamentals of computerized tomography (CT) tissue characterization of the brain. Proc. SPIE 273, 256–266.

    Google Scholar 

  • Fullerton G. D., Potter J. L., and Dornbluth N. C. (1982) NMR relaxation of protons in tissues and other macromolecular water solutions. Magnet. Reson. Imag. 1, 209–228.

    CAS  Google Scholar 

  • Fullerton G. D., Cameron I. L., and Ord V. A. (1984) Frequency dependence of magnetic resonance spin-lattice relaxation of protons in biological material. Radiology 151, 135–138.

    PubMed  CAS  Google Scholar 

  • Gazendam J., Go K. G., and Van Zanten A. K. (1979a) Composrtion of isolated edema fluid in cold-induced edema. J. Neurosurg. 51, 70–77.

    PubMed  CAS  Google Scholar 

  • Gazendam J., Go K. G., and Van Zanten A. K. (1979b) The effect of intracerebral ouabain administration on the composition of edema fluid isolated from cats with cold-induced brain edema. Brain Res. 175, 279–290.

    PubMed  CAS  Google Scholar 

  • Gazendam J., Go K. G., Van der Meer J., and Zuiderveen F. (1979c) Changes of electrical impedance in edematous cat brain during hypoxia and after intracerebral ouabain injection. Exp. Neurol. 55, 78–87.

    Google Scholar 

  • Gessert W. L., Nijboer J., Reid K., and Liedtke R. (1970) Bio-impedance instrumentation. Ann. NY Acad. Sci. 170, 520–531.

    Google Scholar 

  • Go K. G. (1986) Disturbances of Extracellular Homeostasis After a Primary Insult as a Mechanism in Secondary Brain Damage, in Mechanisms of Secondary Brain Damage (Baethmann A., Go K. G., and Unterberg A., eds.) Plenum, New York.

    Google Scholar 

  • Go K. G. (1981) The Classification of Brain Edema, in Brain Edema (de Vlieger M., de Lange S. A., and Beks J. W. F., eds.) Wiley, New York.

    Google Scholar 

  • Go K. G. and Edzes H. T. (1975) Water in brain edema. Observations by the pulsed nuclear magnetic resonance technique. Arch. Neurol. 32, 462–465.

    Google Scholar 

  • Go K. G., Van der Veen P. H., Ebels E. J., and Van Woudenberg F. (1972) Study of electrical impedance of oedematous cerebral tissue during operations. Acta Neurochir. 27, 113–124.

    CAS  Google Scholar 

  • Go K. G., Ebels E. J., Van Woudenberg F., and Geerlings T. (1973) The development of oedema in the immature brain, A comparison of cold-induced oedema in young and adult cat brain. Psychiat. Neurol. Neurochir. 76, 427–437.

    PubMed  CAS  Google Scholar 

  • Go K. G., Gazendam J., and Van Zanten A. K. (1979) Influences of hypoxia on the composition of isolated edema fluid in cold-induced brain edema. J. Neurosurg. 51, 78–84.

    PubMed  CAS  Google Scholar 

  • Go K. G., Hochwald G. M., Koster-Otte L., Van Zanten A. K., and Gandhi M. (1980) The effect of cold-induced brain edema on cerebrospinal fluid formation rate. J. Neurosurg. 53, 652–655.

    PubMed  CAS  Google Scholar 

  • Go K. G., Van Dijk P., Luiten A. L., Brouwer-Van Herwijnen A. A., Van der Leeuw Y. C. L., Kamman R. L., Vencken L. M., Wilmink J., and Berendsen H. J. C. (1983) Interpretation of nuclear magnetic resonance tomograms of the brain. J. Neurosurg. 59, 574–584.

    PubMed  CAS  Google Scholar 

  • Go K. G., Van Dijk P., Luiten A. L., and Teelken A. W. (1984) Proton Spin Tomography in Brain Edema, in Recent Progress in the Study and Therapy of Brain Edema (Go K. G. and Baethmann A., eds.) Plenum, New York.

    Google Scholar 

  • Grant F. C (1923) Localization of brain tumors by determination of the electrical resistance of the growth. J. Am. Med Assoc. 81, 2169–2171.

    Google Scholar 

  • Graziani L., Escriva A., and Katzman R. (1965) Exchange of calcium between blood, brain and cerebrospinal fluid. Am. J. Physiol. 208, 1058–1064.

    PubMed  CAS  Google Scholar 

  • Hatam A., Yu Z. Y., Bergstrom M., Berggren B. M., and Greitz T. (1982) Effect of dexamethasone treatment on peritumoral brain edema: Evaluation by computed tomography. J. Comput. Assist. Tomogr. 6, 586–592.

    PubMed  CAS  Google Scholar 

  • Heisey S. R., Held D., and Pappenheimer J. R. (1962) Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J. Physiol. 203, 775–781.

    PubMed  CAS  Google Scholar 

  • Hinshaw W. S. (1976) Image formation by nuclear magnetic resonance: The sensitive point method. J. Appl. Phys. 47, 3709–3721.

    Google Scholar 

  • Hochwald G. M. and Sahar A. (1971) Effect of spinal fluid pressure on cerebrospinal fluid formation. Exp. Neural. 32, 30–40.

    CAS  Google Scholar 

  • Hochwald G. M., Wald A., DiMattio J., and Malhan C. (1974) The effects of serum osmolarity on cerebrospinal fluid volume flow. Life Sci. 15, 1309–1316.

    PubMed  CAS  Google Scholar 

  • Hoffer E. C., Meador C. K., and Simpson D. C. (1970) A relationship between whole body impedance and total body water volume. Ann. NY Acad Sci. 170, 452–461.

    Google Scholar 

  • Holland G. N., Moore W. S., and Hawkes R. C. (1980) Nuclear magnetic resonance tomography of the brain. J. Comput. Assist. Tomogr. 4, 1–3.

    PubMed  CAS  Google Scholar 

  • Hounsfield G. N. and Ambrose J. (1973) Computerized transverse axial scanning (tomography). I. Description of system II clinical application. Br. J. Radiol. 46, 1016–1047.

    PubMed  CAS  Google Scholar 

  • Ito U., Ohno K., Nakamura R., Suganuma F., and Inaba Y. (1979) Brain edema during ischemia and after restoration of blood flow. Stroke 10, ***542–547.

    PubMed  CAS  Google Scholar 

  • Kachel V. (1976) Basic principles of electrical sizing of cells and particles and their realization in the new instrument “Metricell”. J. Histochem. Cytochem. 24, 211–230.

    PubMed  CAS  Google Scholar 

  • Kamman R. L., Go K. G., Muskiet F. A. J., Stomp G. P., Van Dijk P., and Berendsen H. J. C. (1984) Proton spin relaxation studies of fatty tissue and cerebral white matter. Magnet. Reson. Imag. 2, 211–220.

    CAS  Google Scholar 

  • Kamman R. L., Go K. G., Stomp G., Hulstaert C., and Berendsen H. J. C. (1985) Changes of relaxation times Tl and T2 in rat tissues after biopsy and fixation. Magnet Reson. Imag. 3, 245–250.

    CAS  Google Scholar 

  • Katzman R. and Hussey F. (1970) A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20, 534–544.

    PubMed  CAS  Google Scholar 

  • Katzman R. and Pappius H. M. (1973) Brain Electrolytes and Fluid Metabolism Williams & Wilkins, Baltimore.

    Google Scholar 

  • Kempski O., Chaussy L., Gross U., Zimmer M., and Baethmann A. (1983) Volume regulation and metabolism of suspended C6 glioma cells: An in vitro model to study cytotoxic brain edema. Brain Res. 279, 217–228.

    PubMed  CAS  Google Scholar 

  • Klatzo I., Wisniewski H., Steinwall O., and Streicher E. (1967) Dynamics of Cold Injury Edema. in Brain Edema (Klatzo I. and Seitelberger F., eds.) Springer, New York

    Google Scholar 

  • Kumar A., Welti D., and Ernst R. R. (1975) NMR fourier zeugmatography. J. Magnet. Reson. 18, 69–83.

    CAS  Google Scholar 

  • Laitinen L. V and Johansson G. G. (1967) Locating human cerebral structures by the impedance method. Confin. Neurol. 29, 197–201.

    PubMed  CAS  Google Scholar 

  • Lanksch W., Oettinger W., Baethmann A., and Kazner E. (1976) CT Findings in Brain Edema Compared With Direct Chemical Analysis of Tissue Samples, in Dynamics of Brain Edema (Pappius H. M. and Feindel W., eds.) Springer, New York.

    Google Scholar 

  • Lanksch W., Baethmann A., and Kazner E. (1981) Computed Tomography of Brain Edema, in Brain Edema (De Vlieger M., De Lange S. A., and Beks J. W F, eds.) Wiley, New York.

    Google Scholar 

  • Lauterbur P. C. (1973) Image formation by Induced local interactions. Examples employing nuclear magnetic resonance. Nature 242, 190–191.

    CAS  Google Scholar 

  • Levi C., Gray J. E., MC Cullough E. C., and Hattery R. R. (1982) The unreliability of CT numbers as absolute values. Am. J. Roentgenol 139, 443–447.

    CAS  Google Scholar 

  • Levin V. A., Milhorat T. H., Fenstermacher J. D., Hammock M. K., and Rall D. P. (1971) Physiological studies on the development of obstructive hydrocephalus in the monkey. Neurology 21, 238–246.

    PubMed  CAS  Google Scholar 

  • Ling C. R., Foster M. A., and Hutchison J. M. S. (1980) Comparison of NMR water proton T1 relaxation times of rabbit tissues at 24 MHz and 25 MHz. Phys. Med Biol. 25, 748–751.

    PubMed  CAS  Google Scholar 

  • Lofgren J., Von Essen C., and Zwetnow N. N. (1973) The pressure-volume curve of the cerebrospinal fluid space in dogs. Acta Neural. Stand. 49, 557–574.

    CAS  Google Scholar 

  • Lorenzo A. V., Page L., and Watters G. V. (1970) Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 93, 679–692.

    PubMed  CAS  Google Scholar 

  • Lorenzo A. V., Bresnan M. J., and Barlow C. F. (1974) Cerebrospinal fluid absorption deficit in normal pressure hydrocephalus. Arch. Neurol. 30, 387–393.

    PubMed  CAS  Google Scholar 

  • Lowry O. H. and Hunter T. H. (1945) The determination of serum protein concentration wrth a gradient tube. J. Biol. Chem. 159, 465–474.

    CAS  Google Scholar 

  • Maier-Hauff K., Lange M., Schürer L., Guggenbichler C., Vogt W., Jacob K., and Baethmann A (1984) Glutamate and Free Fatty Acid Concentrations in Extracellular Vasogenic Edema Fluid, in Recent Progress in the Study and Therapy of Brain Edema (Go K. G. and Baethman A., eds.) Plenum, New York.

    Google Scholar 

  • Mansfield P. (1976) Proton spin imaging by nuclear magnetic resonance. Contemp. Physics 6, 553–576.

    Google Scholar 

  • Marmarou A., Poll W., Shulman K., and Bhagavan H. (1978a) A simple gravimetric technique for measurement of cerebral edema. J. Neurosurg. 49, 530–537.

    PubMed  CAS  Google Scholar 

  • Marmarou A., Shulman K., and Rosende R. M. (1978b) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J. Neurosurg. 48, 332–344.

    PubMed  CAS  Google Scholar 

  • Marmarou A., Tanaka K., and Shulman K. (1982) An improved gravimetric measure of cerebral edema. J. Neurosurg. 56, 246–253.

    PubMed  CAS  Google Scholar 

  • Martins A., Ramirez A., and Doyle T. F. (1975) Comparison of radioiodinated serum albumin and blue dextran as indicators to measure rate of formation of cerebrospinal fluid. Exp. Neurol. 47, 249–256.

    PubMed  CAS  Google Scholar 

  • Masserman J. H. (1934) Cerebrospinal hydrodynamics. IV Climcal experimental studies. Arch. Neural. Psychiat. 32, 523–553.

    Google Scholar 

  • Maxwell J. C. (1873) Treatise on Electricity and Magnetism Clarendon, Oxford.

    Google Scholar 

  • McCullough E. C. (1977) Factors affecting the use of quantitative information from a CT-scanner. Aadzology 124, 99–107.

    CAS  Google Scholar 

  • Merlis J. K. (1940) The effect of changes in the calcium content of the cerebrospinal fluid in spinal reflex activity in the dog. Am. J. Physiol. 131, 67–72.

    CAS  Google Scholar 

  • Naruse S., Horikawa Y., Tanaka C., Hirakawa K., Nishikawa H., and Yoshizaki K. (1982) Proton nuclear magnetic resonance studres on brain edema. J. Neurosurg. 56, 747–752.

    PubMed  CAS  Google Scholar 

  • Nelson S. R., Mantz M. L., and Maxwell J. A. (1971) Use of specific gravity in the measurement of cerebral edema. J. Appl. Physiol. 30, 268–271.

    PubMed  CAS  Google Scholar 

  • Oldendorf W. H. (1978) The quest for an image of brain: A brief historical and technical review of brain imaging techniques. Neurology 28, 517–533.

    PubMed  CAS  Google Scholar 

  • Oldendorf W. H. and Davson H. (1967) Brain extracellular space and the sink action of cerebrospinal fluid. Arch. Neurol. 17, 196–205.

    PubMed  CAS  Google Scholar 

  • Oppelt W. W., Maren T. H., Owens E. S., and Rall D. P. (1963) Effects of acid-base alterations on cerebrospinal fluid production. Proc Soc Exp. Biol. Med. 114, 86–89.

    PubMed  CAS  Google Scholar 

  • Organ L. W. and Kwan H. C. (1970) Electrical impedance variation along a tract of brain tissue. Ann. NY Acad Sci. 170, 491–508.

    Google Scholar 

  • Organ L. W., Tasker R. R., and Moody N. F. (1968) Brain tumor localization using an electrical impedance technique. J. Neurosurg. 28, 35–44.

    PubMed  CAS  Google Scholar 

  • Pappenheimer J. R., Heisey S. R., Jordan E. F., and Downer J. de C. (1962) Perfusion of the cerebral ventricular system in unanesthesized goats. Am. J. Physiol. 203, 763–774.

    Google Scholar 

  • Pappenheimer J. R., Fencl V., Heisey S. R., and Held D. (1965) Role of cerebral fluids in control of respiration as studied in unanesthesized goats. Am. J. Physiol. 208, 436–450.

    PubMed  CAS  Google Scholar 

  • Pappius H. M. (1968) Spaces in brain tissue in vitro and in vivo. Prog. Brain Res. 29, 455–464.

    PubMed  CAS  Google Scholar 

  • Pappms H. M. (1974) Fundamental Aspects of Brain Edema, in Handbook of Clinical Neurology vol. 16 (Vinken P. J. and Bruyn B. W., eds.) North Holland, Amsterdam.

    Google Scholar 

  • Parrish R. G., Kurland R.J., Janese W. W., and Bakay L. (1974) Proton relaxation rates of water in brain and brain tumors. Science 183, 438–439.

    PubMed  CAS  Google Scholar 

  • Patberg W. R., Go K. G., and Teelken A. W. (1977) Isolation of edema fluid in cold induced cerebral edema for the study of colloid osmotic pressure, lactate dehydrogenase activity and electrolytes. Exp. Neurol 54, 141–147

    PubMed  CAS  Google Scholar 

  • Patlak C. S. and Fenstermacher J. D. (1975) Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am. J Physiol 229, 877–884.

    PubMed  CAS  Google Scholar 

  • Payne J. T. and Latchaw R. (1978) Variation and non uniform CT number response for intracranial contents as a function of skull thickness and head size. J Comput. Assist. Tomogr. 2, 509.

    Google Scholar 

  • Raaphorst G. P. and Kruuv J. (1981) Nuclear magnetic resonance spinlattice times of normal and transformed cultured mammalian cells and of normal and neoplastic animal tissues. Physiol. Chem. Phys. 13, 251–258.

    PubMed  CAS  Google Scholar 

  • Raaphorst G. P., Kruuv J., and Pintar H. M. (1975) Nuclear magnetic resonance study of mammalian cell water. Biophys. J. 15, 391–402.

    PubMed  CAS  Google Scholar 

  • Ranck J. W. (1963) Specific impedance of rabbit cerebral cortex. Exp. Neurol. 7, 144–152.

    PubMed  Google Scholar 

  • Ranck J. B. and BeMent S. L (1965) The specific impedance of the dorsal columns of cat: An anisotropic medium. Exp. Neurol 11, 451–463.

    PubMed  Google Scholar 

  • Reed D. J., Woodbury D. M., Jacobs L., and Squires R. (1965) Factors affecting distribution of iodide in brain and cerebrospinal fluid. Am. J. Physiol. 209, 757–764.

    PubMed  CAS  Google Scholar 

  • Reid M. H. (1983) Organ and lesion volume measurements with computed tomography. J. Comput. Assist. Tomogr. 7, 268–273.

    PubMed  CAS  Google Scholar 

  • Reulen H. J., Hase U., Fenske A., Samii M., and Schurmann K. (1970) Extrazellularaum und Ionenverteilung in grauen und weissen Substanz des Hundehirns. Acta Neurochir. 22, 305–325.

    CAS  Google Scholar 

  • Robinson B. W. (1962) Localization of intracerebral electrodes. Exp. Neurol. 6, 201–223.

    PubMed  CAS  Google Scholar 

  • Roos A. (1965) Intracellular pH and intracellular buffering power of the cat brain. Am J. Physiol. 209, 1233–1246.

    PubMed  CAS  Google Scholar 

  • Rovit R. L. and Hagan R. (1968) Steroids and cerebral edema. The effects of glucocorticoids on abnormal capillary permeability following cerebral injury in cats. J. Neuropath. Exp. Neurol. 27, 277–299.

    PubMed  CAS  Google Scholar 

  • Rubin R. C., Henderson E. S., Ommaya A. K., Walker M. D., and Rall D. P. (1966) The production of cerebrospmal fluid in man and its modification by acetazolamide. J Neurosurg 25, 430–436.

    PubMed  CAS  Google Scholar 

  • Schroder R (1973) Vergleichende Untersuchung zum spezifischen Gewicht des peritumoralen menschlichen Hirngewebes. Acta Neurochir. 28, 341–352.

    CAS  Google Scholar 

  • Scudder H. J. (1978) Introduction to computer aided tomography. Proc. IEEE 66, 628–637.

    Google Scholar 

  • Sham M. N. and Mahler Y. (1966) Brain impedance measurement by the use of small bipolar needle electrodes. J. Appl. Physiol. 21, 1237–1242.

    Google Scholar 

  • Shigeno T., Brock M., Shigeno S., Fritschka E., and Cervos-Navarro J. (1982) The determination of brain water content: Microgravimetry versus drying-weighing method. J. Neurosurg. 57, 99–107.

    PubMed  CAS  Google Scholar 

  • Shimabukuro H. (1969) Electrical impedance method for localizing brain structures. Arch. Japn. Chir. 38, 612–625.

    CAS  Google Scholar 

  • Sklar F. H. and Elashvili I. (1977) The pressure-volume function of brain elasticity. Physiologic considerations and clinical applications. J. Neurosurg. 47, 670–679.

    PubMed  CAS  Google Scholar 

  • Sklar F. H., Reisch J., Elashvili I., Smith T., and Long D. M. (1980) Effects of pressure on cerebrospinal fluid formation: Nonsteady-state measurements in dogs. Am. J. Physiol. 239, R277–R284.

    PubMed  CAS  Google Scholar 

  • Speller R. D., White D. R., Showalter C. F., Rothenberg L. N., Pentlow K. S., Morgan T. J., and Shope T. B. (1981) An evaluation of CT systems from ten manufacturers. Br. J Radial. 54, 1053–1061.

    CAS  Google Scholar 

  • Streicher E., Ferris P J., Prokop J. D., and Klatzo I. (1964) Brain volume and thiocyanate space in local cold injury. Arch. Neural. 11, 444–448.

    CAS  Google Scholar 

  • Tachibana S. (1970) Impedography in tumor localization. Tr. Am. Neurol. Ass. 95, 317–319.

    CAS  Google Scholar 

  • Tachibana S. (1971) Impedance study of brain tissue changes after penetrating injury. Exp. Neural. 32, 206–217.

    CAS  Google Scholar 

  • Takagr H., Shapiro K., Marmarou A., and Wisoff H. (1981) Microgravimetric analysis of human brain tissue. Correlation with computerized tomography scanning. J. Neurosurg. 54, 797–801.

    Google Scholar 

  • Ter-Pogossian M. M. (1977) Computerized cranial tomography: Equipment and physics. Sem. Roentgen. 12, 13–25.

    CAS  Google Scholar 

  • Torack R. M., Alcala H., and Gado M. (1976a) Water, Specific Gravity and Histology as Determinants of Diagnostic Computerized Cranial Tomography (CT), in Dynamics of Brain Edema (Pappius H. M. and Feindel W., eds.) Springer, New York.

    Google Scholar 

  • Torack R. M., Alcala H., Gado M., and Burton R. (1976b) Correlative assay of computerized cranial tomography (CTT), water content and specific gravny in normal and pathological post mortem brain. J. Neuropath. Exp. Neurol. 35, 385–392.

    PubMed  CAS  Google Scholar 

  • Tornheim P. A. and MC Laurm R. L. (1984) Effects of Mechanical Impact to the Skull on Tissue Density of the Cerebral Cortex, in Recent Progress in the Study and Therapy of Brain Edema (Go K. G. and Baethmann A., eds.) Plenum, New York.

    Google Scholar 

  • Tornheim P. A., MC Laurin R. L., and Thorpe J. F. (1976) The edema of cerebral contusion. Surg. Neurul. 5, 171–175.

    CAS  Google Scholar 

  • Unterberg A., Maier-Hauff K., Wahl M., Lange M., and Baethmann A. (1984) Cerebral Uptake and Consumption of Plasma Kininogens in Vasogenic Brain Edema: Recent Findings of Kinin Mechanisms, in Recent Progress in the Study and Therapy of Brain Edema (Go K. G. and Baethmann A., eds.) Plenum, New York.

    Google Scholar 

  • Van der Veen P. H., Go K. G., Zuiderveen F., Buiter D., and VanderMeer J. (1973) Electrical impedance of cat brain with cold-induced edema. Exp. Neurol. 40, 675–682.

    PubMed  Google Scholar 

  • Van Harreveld A. (1966) Bratn Tissue Electrolytes. Butterworths, London.

    Google Scholar 

  • Van Harreveld A. and Schade J. P. (1960) On the Distribution and Movements of Water and Electrolytes in the Cerebral Cortex, in Structure and Function of the Cerebral Cortex (Tower D. B. and Schade J. P., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Van Harreveld A., Murphy T., and Nobel K. W. (1963) Specific impedance of rabbrt’s cortical tissue. Am J. Physiol 205, 203–207.

    Google Scholar 

  • Walser R. L. and Ackerman L. V. (1977) Determination of volume from computerized tomograms. Finding the volume of fluid filled brain cavities. J. Comput. Assist. Tomogr. 1, 117–130.

    PubMed  CAS  Google Scholar 

  • Weiss M. H. and Wertman N. (1978) Modulation of CSF production by alterations in cerebral perfusion pressure. Arch. Neurol. 35, 527–529.

    PubMed  CAS  Google Scholar 

  • Welch K. (1975) The principles of physiology of the cerebrospmal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv. Neurol. 13, 247–332.

    PubMed  CAS  Google Scholar 

  • Woodward D., Reed D. J., and Woodbury D. M. (1967) Extracellular space of rat cerebral cortex. Am. J. Physiol. 212, 367–370.

    PubMed  CAS  Google Scholar 

  • Zatz L. M., Jernigan T. L., and Ahumada A. J., (1982) White matter changes in cerebral computed tomography related to aging. J Comput. Assist. Tomogr. 6, 19–23.

    PubMed  CAS  Google Scholar 

  • Zonneveld F. W. (1983) Computed Tomography Philips Medical Systems Publishing, Eindhoven.

    Google Scholar 

  • Zonneveld F. W. and Vljverberg G. P. (1984) The relationship between slice thickness and image quality in CT. Medicamundi 29, 104–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Go, K.G. (1988). Physical and Biochemical Methods for Analysis of Fluid Compartments. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:127

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:127

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics