Skip to main content

Cerebrovascular Water and Ion Transport

  • Protocol
The Neuronal Microenvironment

Part of the book series: Neuromethods ((NM,volume 9))

  • 2775 Accesses

Abstract

The capillaries of the central nervous system (CNS) are unique among the blood vessels of the body in having tight junctions between adjacent endothelial cells, no fenestrae, and a complete pericapillary investment (the glial foot processes) between parenchymal cells and capillary endothelium. The net result of these singular properties is to transform an ordinary capillary endothelium into a formidable restriction to the passage of both solute and solvent, a blood-brain barrier (BBB). The BBB serves to passively isolate the brain interstitial microenvironment from the plasma and, by means of carrier transport systems resident on the capillary endothelial wall, to actively regulate the passage of substrates and metabolites between the blood and the brain extracellular space. Taken together, these active and passive regulatory functions of the BBB serve to maintain an optimal environment for neuronal function and for transfer of information within the brain parenchyma (Nicholson, 1980; Cserr and Bundgaard, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Betz A. L. (1983) Sodium transport in capillaries isolated from rat brain J. Neurochem. 41, 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  • Betz A. L. and Iannotti F. (1983) Simultaneous determination of regional cerebral blood flow and blood-brain glucose transport kmetics in the gerbil. J. Cereb. Blood Flow Metab. 3, 193–199.

    PubMed  CAS  Google Scholar 

  • Blasberg R. G., Fenstermacher J. D., and Patlak C. S. (1983a) Transport of oc-aminoisobutyric acid across brain capillary and cellular membranes. J. Cereb. Blood Flow Metab. 3, 8–32.

    PubMed  CAS  Google Scholar 

  • Blasberg R. G., Patlak C. S., and Fenstermacher J. D. (1983b) Selection of experimental condmons for the accurate determination of blood-brain transfer constants from single-time experiments: A theoretical analysis. J. Cereb. Blood Flow Metab. 3, 215–225.

    PubMed  CAS  Google Scholar 

  • Bolwig T. G. and Lassen N. A. (1975) The diffusion permeability to water of the rat blood-brain barrier. Acta Physiol. Scam?. 93, 415–422.

    Article  CAS  Google Scholar 

  • Bowman P. D., Enms S. R., Rarey K. E., Betz A. L., and Goldstein G. W. (1983) Brain microvessel endothelial cells in tissue culture: A model for study of blood-brain barrier permeability. Ann. Neural. 14, 396–402.

    Article  CAS  Google Scholar 

  • Bradbury M. W. B. (1985) Critique: The blood-brain barrier in vitro. Neurochem lnt 7, 27–28.

    CAS  Google Scholar 

  • Bradbury M. W. B. (1979) The Concept of a Blood Bram Barrier. John Wiley, Chichester.

    Google Scholar 

  • Bradbury M. W. B. and Kleeman R. (1967) Stability of the potassium content of cerebrospinal fluid and brain. Am. J. Physzol. 213, 519–528.

    CAS  Google Scholar 

  • Bradbury M. W. B., Patlak C. S., and Oldendorf W. H. (1975) Analysis of brain uptake and loss of radrotracers after intracarotrd injection. Am. J. Physiol. 229, 1110–1115.

    PubMed  CAS  Google Scholar 

  • Clark H. B., Hartman B. K., Raichle M. E., Preskorn S. H., and Larson K. B. (1981) Measurement of cerebral vascular extraction fractions in the rat using intracarotid mjection techniques. Bruin Res. 208, 311–323.

    Article  CAS  Google Scholar 

  • Crone C. (1963) Permeability of capillaries in various organs as de-termined by use of the indicator diffusion method. Acta Physlol. Stand. 58, 292–305.

    Article  CAS  Google Scholar 

  • Crone C. (1965) The permeabrllty of brain capillaries to non-electrolytes. Acta Physlol. Stand 104, 407–417.

    Article  Google Scholar 

  • Cserr H. F. and Bundgaard M. (1984) Blood-brain interfaces in vertebrates: A comparative approach. Am. J. Physiol. 246, R277–R288.

    PubMed  CAS  Google Scholar 

  • Cserr H. F., Cooper N., Suri K., and Patlak C. S. (1981) Efflux of radrolabeled polyethylene glycols and albumin from rat brain. Am. J. Physrol. 240, F319–F328.

    CAS  Google Scholar 

  • Daniel P. M., Donaldson J., and Pratt O. E., (1975) A method for injecting substances into the clrculation to react rapidly and to maintain a steady level. With examples of its application in the study of carbohydrate and amino acid metabolism. Med. Biol. Eng. 13, 214–227

    Article  PubMed  CAS  Google Scholar 

  • Davson H. and Welch K. (1971) The permeation of several materials into the fluids of the rabbit’s brain. J. Physlol. 218, 337–351.

    CAS  Google Scholar 

  • Dick A. P., Hank S. I., Klip A., and Walker D. M. (1984) Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. PYOC. Natl. Acad. Sci. USA 81, 7233–7237.

    Article  CAS  Google Scholar 

  • Elchlmg J. O., Raichle M. E., Grubb R. L., and Ter-Pogossian M. M. (1974) Evidence of the limitations of water as a freely diffusable tracer in the brain of the rhesus monkey. Czrc. Res. 35, 358–364.

    Google Scholar 

  • Eisenberg H. M., Suddith R. L., and Crawford J. S. (1980) Transport of Sodium and Potassium Across the Blood-Brain Barrier, in The Cerebral Mzcrovasculature (Elsenberg H. M. and Suddith R. L., eds.) Plenum, New York.

    Google Scholar 

  • Fenstermacher J. D. (1985) Flow of Water and Solutes Across the Blood-Brain Barrier, in Trauma of the Central Nervous System (Dacey R. G., ed.) Raven, New York.

    Google Scholar 

  • Fenstermacher J. D. (1984) Volume Regulation of the Central Nervous System, in Edema (Staub N. and Taylor A. E., eds.) Raven, New York.

    Google Scholar 

  • Fenstermacher J. D. (1983) Drug Transfer Across the Blood-Brain Barrier, in Topics zn Pharmaceutical Sczences 1983 (Breimer D. and Speiser P., eds.), Elsevrer, Amsterdam.

    Google Scholar 

  • Fenstermacher J. D. and Johnson J. A. (1966) Filtration and reflection coefficients of the rabbit blood-brain barrier. Am. 1, Physiol. 211, 341–346.

    CAS  Google Scholar 

  • Fenstermacher J. D. and Rapoport S. I. (1984) The Blood-Brain Barrier, in Handbook of Physiology section 2. The Cardzovascular System vol. IV (Renkin E. M. and Michel C. C., eds.) American Physiological Society, Bethesda, Maryland.

    Google Scholar 

  • Fenstermacher J. D., Blasberg R. G., and Patlak, C. S. (1981) Methods for quantifying the transport of drugs across brain barrier systems. Pharmacol. Ther. 14, 217–248.

    Article  PubMed  CAS  Google Scholar 

  • Furlow T. W. and Bass N. H. (1976) Cerebral hemodynamics in the rat assessed by a non-diffusible indicator-dilution technique. Brazn Res 110, 366–370.

    Article  CAS  Google Scholar 

  • Gledde A. J., Hansen A. J., and Siemkowicz E. (1980) Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat. Acta Physlol. Stand. 108, 321–330.

    Article  Google Scholar 

  • Go K. G., Lammertsma A., Paans A., Vaalburg W., and Woldring M., (1981) Extraction of water labeled with oxygen 15 during single capillary transit Influence of blood pressure, osmolarity and blood-brain barrier damage. Arch. Neurol. 38, 581–584.

    PubMed  CAS  Google Scholar 

  • Hardebo J. E. and Nilsson B. (1979) Estimation of cerebral extraction of circulating compounds by the brain uptake index method: Influence of circulation time, volume inlection, and cerebral blood flow Actu Physiol. Stand. 107, 153–159.

    Article  CAS  Google Scholar 

  • Hawkins R. A., Mans A. M., and Biebuyck J. F. (1982) Amino acid supply to individual cerebral structures in awake and anesthetized rats. Am. J. Physiol. 242, El–El1.

    Google Scholar 

  • Herscovitch P. and Raichle M. E. (1985) What is the correct value for the brain-blood partition coefficient for water? J. Cereb. Blood Flow Metab. 5, 65–69.

    PubMed  CAS  Google Scholar 

  • Hertz M. M. and Paulson O. B., (1980) Heterogeneity of cerebral capillary flow and its consequences for estimation of blood-brain barrier permeability. J. Clan. lnvest 65, 1145–1151

    Article  CAS  Google Scholar 

  • House C. R. (1974) Water Transport zn Cells and Tzssues pp 36–76. Williams and Wilkms, Baltimore, Maryland.

    Google Scholar 

  • Joo F. (1985) The blood-brain barrier zn vitro: Ten years of research on microvessels isolated from the brain. Neurochem. Int. 7, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Kempski O., Spatz M., Valet G., and Baethmann A. (1985) Cell volume regulation of cerebrovascular endothelium in vitro. J. Cell. Physzol. 123, 51–54.

    CAS  Google Scholar 

  • Lajtha A. and Toth J. (1962) The efflux of intracerebrally administered amino acids from the brain. J. Neurochem. 9, 199–212.

    Article  PubMed  CAS  Google Scholar 

  • Lassen N. A. and Crone C. (1970) The Extraction Fraction of a Capillary Bed to Hydrophilic Molecules, Theoretical Considerations Regarding the Single Injection Technique With a Discussion of the Role of Diffusion Between Laminar Streams (Taylor’s Effect), in Capdlary Permeabrlity (Crone C. and Lassen N. A., eds) Alfred Benzon Symposium II, Academic, New York.

    Google Scholar 

  • Lassen N. A., Trap-Jensen J., Alexander S. C., Olesen J., and Paulson O. B. (1971) Blood-brain barrier studies in man using the double-indicator method. Am. j. Physiol. 220, 1627–1631.

    PubMed  CAS  Google Scholar 

  • Levin V. A. (1980) Relationship of octanol/water partition coefficrent and molecular weight to rat brain capillary permeability. J. Med. Chem. 23, 682–684.

    Article  PubMed  CAS  Google Scholar 

  • Levin V. A. and Patlak C. S. (1972) A compartmental analysis of 24Na in rat cerebrum, sciatic nerve, and cerebrospinal fluid. J. Physlol. 224, 559–581.

    CAS  Google Scholar 

  • Melton J. E. and Nattie E. E. (1983) Brain and CSF water and ions during dilutional and isosmotic hyponatremia in the rat. Am. J. Physiol. 244, R724–R732.

    PubMed  CAS  Google Scholar 

  • Murray J. E. and Plioplys A. (1972) An indicator drlution technique for study of blood-to-brain solute passage in the rat. J. Appl. Physzol. 33, 681–683

    CAS  Google Scholar 

  • Nicholson C. (1980) Dynamics of the brain cell microenvironment. Neurosci. Res. Prog Bull. 18, 177–322.

    Google Scholar 

  • Ohno K., Pettigrew K. D., and Rapoport S. I. (1978) Lower limits of cerebrovascular permeability to electrolytes in the conscious rat. Am. J. Physlol. 235, H299–H307.

    CAS  Google Scholar 

  • Oldendorf W. H. (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brazn Res. 24, 372–376.

    Article  CAS  Google Scholar 

  • Oldendorf W. H. and Braun L. D. (1976) [3H]-tryptamme and [3H]-water as diffusible internal standards for measuring brain extraction of radiolabeled substances following carotid inlection. Bruzn Res. 113, 219–224.

    Article  CAS  Google Scholar 

  • Patlak C. S. and Fenstermacher J. D. (1975) Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am. J Physlol. 229, 877–884.

    CAS  Google Scholar 

  • Patlak C. S. and Paulson O. B. (1981) The role of unstirred layers for water exchange across the blood-brain barrier. Mzcrovasc. Res. 21, 117–127.

    Article  CAS  Google Scholar 

  • Patlak C. S. and Pettigrew K. D. (1976) A method to obtain infusion schedules for prescribed blood concentration time courses. J. Appl. Physiol. 40, 458–463.

    PubMed  CAS  Google Scholar 

  • Patlak C. S., Blasberg R. G., and Fenstermacher J. D. (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metabol. 3, 1–7.

    CAS  Google Scholar 

  • Paulson O. B., Hertz M. M., Bolwig T. G., and Lassen N. A. (1977) Filtration and diffusion of water across the blood-brain barrier in man. Mzcrovasc Res 13, 113–124.

    Article  CAS  Google Scholar 

  • Phelps M. S., Huang E. J., Selin C., and Kuhl D. E. (1981) Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability-surface area product. Stroke 12, 607–619.

    PubMed  CAS  Google Scholar 

  • Pollay M. and Stevens A. (1979) Simultaneous measurement of regional blood flow and glucose extraction in rat brain. Neurochem. Res. 4, 109–123.

    Article  PubMed  CAS  Google Scholar 

  • Preston E., Allen M. and Haas N. (1983) A modified method for measurement of radiotracer permeation across the rat blood-brain barrier. The problem of correcting brain uptake for intravascular tracer. J Neuroscr. Meth. 9, 45–55.

    Article  CAS  Google Scholar 

  • Raichle M. E. and Grubb R. L. (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 143, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Raichle M. E., Eichling J. O., and Grubb R. L. (1974) Brain permeability of water. Arch. Neurol. 30, 319–321.

    PubMed  CAS  Google Scholar 

  • Raichle M. E., Eichlmg J. O., Straatman M. G., Welch M. J., Larsen K. and Ter-Pogoswan M. M. (1976) Blood-brain barrier permeability of 11C-labeled alcohols and 15O-labeled water. Am. J, Physiol. 230, 543–552.

    CAS  Google Scholar 

  • Raichle M. E., Hartman B. K., Eichling J. O., and Sharpe L. G. (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Pm. Natl. Acud. Sci. USA 72, 3726–3730.

    Article  CAS  Google Scholar 

  • Rapoport S. I., Ohno K, and Pettigrew K. D. (1979) Drug entry into brain. Brain Res. 172, 354–359.

    Article  PubMed  CAS  Google Scholar 

  • Roberts G. W., Larsen K. B., and Spaeth E. E. (1973) Interpretation of mean transit measurements for multiphase systems. J. Theoret. Bzol. 39, 447–475.

    Article  CAS  Google Scholar 

  • Rosenberg G. A., Kyner W. T., and Estrada E. (1980) Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J. Physiol. 238, F42–F49.

    PubMed  CAS  Google Scholar 

  • Sage J. I., Van Uitert R. L., and Duffy T. E. (1981) Simultaneous measurement of cerebral blood flow and urndirectional movement of substances across the blood-brain barrier: Theory, method and application to leucine. J. Neurochem. 36, 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  • Smith Q. R. and Rapoport S. I (1984) Carrier-mediated transport of chloride across the blood-brain barrier. J. Neurochem. 42, 754–763.

    Article  PubMed  CAS  Google Scholar 

  • Smith Q. R., Johanson C. E., and Woodbury D. M. (1981) Uptake of 36C1 and 22Na by the brain-cerebrospinal fluid system: Comparison of the permeability of the blood-brain and blood-cerebrospmal fluid barriers. J. Neurochem. 37, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Smith Q. R., Takasato Y., and Rapoport S. I. (1984) Kinetic analysis of L-leucine transport across the blood-brain barrier. Bruin Res. 311, 167–170

    Article  CAS  Google Scholar 

  • Stulc J., (1967a) The entry of 24Na from blood into the brain of nice during 30 minutes after intravenous isotope injection. Lzfe Scz. 6, 85–95.

    CAS  Google Scholar 

  • Stulc J. (1967b) The permeability of mouse cerebral capillaries to sodium. Life Ser. 6, 1837–1846.

    Article  CAS  Google Scholar 

  • Szentistvanyi I., Patlak C. S., Ellis R. A., and Cserr H. F. (1984) Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835–F844

    PubMed  CAS  Google Scholar 

  • Takasato Y., Rapoport S. I., and Smith Q. R. (1984) An zn situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physzol. 247, H486–H493.

    Google Scholar 

  • Yudilevich D. L. and De Rose N. (1971) Blood-brain transfer of glucose and other molecules measured by rapid indicator diffusion. Am J. Physiol. 220, 841–846.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Melton, J.E. (1988). Cerebrovascular Water and Ion Transport. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics