Skip to main content

Na+/K+-ATPase in Nervous Tissue

  • Protocol
Neurotransmitter Enzymes

Part of the book series: Neuromethods ((NM,volume 5))

Abstract

Mammalian cells are surrounded by a fluid medium that contains a high concentration of sodium and a low concentration of potassium. In contrast, the cell cytoplasm is high in potassium and low in sodium. To maintain this chemical gradient, the cell must transport excess sodium out of, and potassium into, the cell. The mechanism underlying this phenomenon was first proposed by (1941), who realized that there must be active sodium excretion to control intracellular sodium levels in skeletal muscle. (1953) showed that the sodium and potassium fluxes across red blood cell membranes are dependent on adenosine triphosphate (ATP), and that these fluxes can be inhibited by cardiac glycosides. The idea of an “active” ion transport mechanism (ion pump) was thus formulated. Subsequent studies by (1957) have indicated that there is a Mg2+-dependent adenosine triphosphatase (Mg2+-ATPase) in the microsomal fraction of crab nerve that is markedly activated by the concurrent presence of sodium and potassium ions. Twenty-six years have lapsed since this original observation, and it is now accepted that the enzyme system described by (1957) is responsible for the active transport of sodium and potassium across the cell membrane. The enzyme system was named Na+, K+-activated, Mg2+-dependent adenosine triphosphatase (Na+/K+-ATPase) (EC 3.6.1.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed K. and Judah J. D. (1964) Preparation of lipoproteins containing cation-dependent ATPase. Biochim. Biophys. Acta 93, 603–613.

    PubMed  CAS  Google Scholar 

  • Ahmed K. and Judah J. D. (1965) Identification of active phosphoprotein in a cation-activated adenosine triphosphatase. Biochim. Biophys. Acta 104, 112–120.

    PubMed  CAS  Google Scholar 

  • Ahmed K., Judah J. D., and Scholefield P. G. (1966) Interaction of sodium and potassium with a cation-dependent adenosine triphosphatase system from rat brain. Biochim. Biophys. Acta 120, 351–360.

    PubMed  CAS  Google Scholar 

  • Akagawa K. and Tsukuda Y. (1979) Presence and characteristics of catecholamine-sensitive Na-K ATPase in rat striatum. J. Neurochem. 32, 269–271.

    PubMed  CAS  Google Scholar 

  • Akera T. and Brody T. M. (1968) Inhibition of brain sodium-and potassium-stimulated adenosine triphosphatase activity by chlorpromazine free radical. Mol Pharmacol. 4, 600–612.

    PubMed  CAS  Google Scholar 

  • Akera T. and Brody T. M. (1969) The interaction between chlorpromazine free radical and microsomal sodium-and potassium-activated adenosine triphosphatase from rat brain. Mol. Pharmacol. 5, 605–614.

    PubMed  CAS  Google Scholar 

  • Akera T. and Brody T. M. (1970) Inhibitory sites on sodium-and potassium-activated adenosine triphosphatase for chlorpromazine free radical and ouabain. Mol. Pharmacol. 6, 557–566.

    PubMed  CAS  Google Scholar 

  • Akera T. and Brody T. M. (1971) Membrane adenosine triphosphatase. The effect of potassium on the formation and dissociation of the ouabain-enzyme complex. J. Pharmacol. Exp. Ther. 176, 545–557.

    PubMed  CAS  Google Scholar 

  • Akera T., Rech R. H., Marquis W.J., Tobin T., and Brody T. M. (1973) The lack of relationship between brain Na+, K+-activated adenosine triphosphatase and the development of tolerance to ethanol in rats. J. Pharmacol Exp. Ther. 185, 594–601.

    PubMed  CAS  Google Scholar 

  • Albers R. W (1967) Biochemical aspects of active transport. Ann Rev. Biochem 36, 727–756.

    PubMed  CAS  Google Scholar 

  • Albers R W., Koval G. J., and Siegel G. J. (1968) Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosine triphosphatase. Mol. Pharmacol. 4, 324–326.

    PubMed  CAS  Google Scholar 

  • Albers R. W., Rodriguez de Lores G., and De Robertis E. (1965) Sodium-potassium-activated ATPase and potassium-activated p-nitro-phenylphosphatase: A comparison of their subcellular localizations in rat brain Proc. Natl. Acad Sci USA 53, 557–564.

    PubMed  CAS  Google Scholar 

  • Alexander D. R. and Rodnight R. (1970) Separation at neutral pH of a 32P-labelled membrane protein associated with the sodium-plus-magnesium ion-activated adenosine triphosphatase from ox brain. Biochemistry J. 119, 44–45P

    Google Scholar 

  • Ames G. F. L. (1974) Resolution of bacterial protein by polyacrylamide gel electrophoresis on slabs membrane, soluble and periplasmic fractions. J. Biol Chem. 249, 634–644.

    PubMed  CAS  Google Scholar 

  • Asano Y., Tashima Y., and Matsui H. (1970) (Na plus minus K plus)-ATPase from the frog bladder and its relationship to sodium transport. Biochim Biophys. Acta 219, 169–178.

    PubMed  CAS  Google Scholar 

  • Askari A. and Huang W. (1980) Na+, K+-ATPase: Half-of-the subunits cross-linking reactivity suggests an oligomeric structure containing a mimmum of four catalytic subunits. Biochem. Biophys. Res. Commun. 93, 448–453.

    PubMed  CAS  Google Scholar 

  • Askari A. and Huang W. (1981) Na+, K+-ATPase in (Ca2+ + ouabain)-dependent phosphorylation by Pi. FEBS Lett. 126, 215–218.

    PubMed  CAS  Google Scholar 

  • Atkinson A. and Lowe A. G. (1972) The pH dependence of the effects of Na+, pK+ and ouabain on the ATPase activity of NaI-treated brain microsomes with Mg2+, Mn2+, Ca2+ and Zn2+ as divalent metal activators. Biochim. Biophys Acta 266, 103–115.

    PubMed  CAS  Google Scholar 

  • Atkinson A., Hunt S., and Lowe A. G. (1968) Manganese activation of a (Na + K)-dependent ATPase in pig brain microsomes. Biochim. Biophys. Acta 167, 469.

    PubMed  CAS  Google Scholar 

  • Avruch J. and Fairbanks G. (1972) Demonstration of a phosphopeptide intermediate, Na+-and K+-stimulated adenosine triphosphatase reaction of the erythrocyte membrane. Proc. Natl. Acad. Sci. USA 69, 1216–1220.

    PubMed  CAS  Google Scholar 

  • Banerjee S. P. and Sen A. K (1969) On the mechanism of inhibition of (Na + K)-ATPase by N-ethylmaleimide and ethacrynic acid. Fed. Proc. 28, 589.

    Google Scholar 

  • Banerjee S. P. and Sen A. K. (1970) Inhibition of sodium-and potassium-dependent adenosine triphosphatase by ethacrynic acid: Two modes of action. Mol Pharmacol. 6, 680–690.

    PubMed  CAS  Google Scholar 

  • Banerjee S. P. and Sharma V. K. (1978) 3H-ouabain binding to peripheral organs of cats. Effects of ethanol. Br. J. Pharmacol. 62, 475–479.

    PubMed  CAS  Google Scholar 

  • Banerjee S. P., Wong S. M. E., and Sen A. K. (1970) Differentiation between two conformations of (Na + K)-ATPase by N-ethylmaleimide. Fed. Proc. 29, 723.

    Google Scholar 

  • Barnett R. E. (1970) Effect of monovalent cations on the ouabain inhibition of the sodium and potassium ion activated adenosine triphosphatase. Biochemistry 9, 4644–4648.

    PubMed  CAS  Google Scholar 

  • Beauge L. A. and Glynn I. M. (1978) Commercial ATP containing traces of vanadate alters the response of (Na+ + K′) ATPase to external potassium. Nature 272, 551–552.

    PubMed  CAS  Google Scholar 

  • Bond G. H. and Hudgins P. M. (1979) Kinetics of inhibition of Na+, K+-ATPase by Mg2+, K+ and vanadate. Biochemistry 18, 325–331.

    PubMed  CAS  Google Scholar 

  • Bonting S. L. (1970) Sodium-Potassium Activated Adenosine Triphosphatase and Cation Transport, in Membrane Ion Transport, Vol. I. (Bittar E. E., ed.), Wiley Interscience, New York.

    Google Scholar 

  • Bonting S. L., Simon K. A., and Hawkins N. M. (1961) Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch. Biochem. Biophys. 95, 416–423.

    PubMed  CAS  Google Scholar 

  • Breer H. and Jeserich G. (1979) Ganglioside interaction with synaptosomal membranes, in Glyco-Conjugates, Proceedings of the 5th International Symposium (Schauer R., Booer P., Buddecke E., Kramer M. F., Vliegenthart J. C. G., and Wiegandt H. eds.), pp. 575–575, Georg Thieme, Stuttgart.

    Google Scholar 

  • Britten J. S. and Blank M. (1968) Thallium activation of the (Na+ + K+)-activated ATPase of rabbit kidney. Biochim. Biophys. Acta 159, 160–166.

    PubMed  CAS  Google Scholar 

  • Brodsky W. A. and Shamoo A. E. (1973) Binding of ATP to and release from microsomal Na+, K+-ATPase. Biochim. Biophys. Acta 291, 208–228.

    PubMed  CAS  Google Scholar 

  • Brodsky W. and Sohn R. J, (1974) Acid-stable and heat-stable phosphoenzyme complex of (Na+ + K+)-ATPase in the eel electric organ, and the related concept of active Na transport. Ann. NY Acad. Sci 242, 106–119.

    PubMed  CAS  Google Scholar 

  • Cantley L. C., Jr. and Josephson L. (1976) A slow interconversion between active and inactive states of (Na-K)-ATPase. Biochemistry 15, 5280–5287.

    PubMed  CAS  Google Scholar 

  • Cantley L. C., Cantley L. G., and Josephson L. (1978a) A characterization of vanadate interactions with the (Na-K)-ATPase mechanistic and regulatory implications. J. Biol. Chem. 253, 7361–7368.

    PubMed  CAS  Google Scholar 

  • Cantley L. C., Ferguson J. H., and Kustin K. (1978b) Norepinephrine complexes and reduces vanadium (V) to reverse vanadate inhibition of the (Na-K)-ATPase. J. Am. Chem. Soc. 100, 5210–5212.

    CAS  Google Scholar 

  • Cantley L. C., Jr., Josephson L., Warner R., Yanacisawa M., Lechene C., and Guidotti G. (1977) Vanadate is a potent (Na-K)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 252, 7421–7423.

    PubMed  CAS  Google Scholar 

  • Caputto R., Maccloni A. H. R., and Caputto B. I. (1977) Activation of deoxycholate-solubilized adenosine triphosphatase by ganglioside and aslaloganglioside preparations. Biochem. Biophys. Res. Commun. 74, 1046–1052.

    PubMed  CAS  Google Scholar 

  • Chan S. L. and Quastel J. H (1970) Effects of neurotropic drugs on sodium influx into rat brain cortex in vitro. Biochem Pharmacol 19, 1071–1085.

    CAS  Google Scholar 

  • Charney A. N., Silva P., and Epstein F. H. (1975) An in vitro inhibitor of Na-K-ATPase present in an adenosine triphosphate preparation. J. Appl. Physiol. 39, 156–158.

    PubMed  CAS  Google Scholar 

  • Charnock J. S., Rosenthal A. S., and Post R. L. (1963) Studies of the mechanism of cation transport. II. A phosphorylated intermediate in the cation-stimulated enzymic hydrolysis of adenosine triphosphate. Aust. J. Exp. Biol. Med. Sci. 41, 675–686.

    PubMed  CAS  Google Scholar 

  • Cheng E Y. and Cutkomp L. K (1975) The ATPase system in American cockroach muscle and nerve cord. Insect. Biochem. 5, 421–427.

    CAS  Google Scholar 

  • Chow Y. R. and Akera T. (1978) Membrane (Na+, K+)-ATPase of canine brain, heart and kidney Tissue-dependent differences in kinetic properties and the influence of purification procedures. Biochim. Biophys. Acta 508, 313–327

    Google Scholar 

  • Collins R. C. and Albers R. W. (1972) The phosphoryl acceptor protein of Na-K-ATPase from various tissues J Neurochem. 19, 1209–1213.

    PubMed  CAS  Google Scholar 

  • Collins J. H., Forbush B., III, Lane L. K., Ling E., Schwartz A., and Zot A. (1982) Purification and characterization of an (Na+ + K+)-ATPase proteolipid labelled with a photoaffinity derivative of ouabain. Biochim Biophys. Acta 686, 7–12.

    PubMed  CAS  Google Scholar 

  • Cortas N. and Walser M. (1971) Sodium-potassium dependent ATPase in toad bladder: Novel response to ouabain. Fed. Proc. 30, 331.

    Google Scholar 

  • Cummins J. and Hyden H. (1962) Adenosine triphosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim. Biophys Acta 60, 271–283.

    PubMed  CAS  Google Scholar 

  • Cutkomp L. K., Yap H. H., Vea E. U., and Koch R. B. (1971) Inhibition of oligomycin-sensitive (mitochondrial) Mg2+-ATPase by DDT and selected analogs in fish and insect tissue. Life Sci. 10, 1201–1209.

    CAS  Google Scholar 

  • Dahl J. L. and Hokin L. E. (1974) The sodium-potassium adenosine-triphosphatase. Ann. Rev Biochem. 43, 327–356.

    PubMed  CAS  Google Scholar 

  • Daly J. (1977) Cyclic Nucleotides in the Nervous System. Plenum, New York

    Google Scholar 

  • Dean R. B. (1941) Theories of electrolyte equilibrium in muscle. Biol. Symp. 3, 331–348.

    CAS  Google Scholar 

  • Desaiah D. and Ho I. K. (1977) Kinetics of catecholamine sensitive Na+-K+-ATPase activity in mouse brain synaptosomes. Biochem. Pharmacol. 26, 2029–2035.

    PubMed  CAS  Google Scholar 

  • Desaiah D. and Koch R. B. (1975) Inhibition of fish brain ATPases by aldrin-transdiol, aldrin, dieldrin and photodieldrin. Biochem Biophys. Res. Commun. 64, 13–19.

    PubMed  CAS  Google Scholar 

  • Duggan D. E. and Noll R. M. (1965) Effects of ethacrynic acid and cardiac glycosides upon a membrane adenosine triphosphatase of renal cortex. Arch. Biochem Biophys 109, 388–396.

    CAS  Google Scholar 

  • Dunham E. T. and Glynn I. M. (1961) Adenosine triphosphatase activity and the active movements of alkali metal ions. J. Physiol. (Lond.) 156, 274–293.

    PubMed  CAS  Google Scholar 

  • Eayrs J. T. (1955) The cerebral cortex of normal and hypothyroid rats. Acta Anat. (Basel) 25, 160–163.

    PubMed  CAS  Google Scholar 

  • Epstein F. H. and Whittam R (1966) The mode of inhibition by calcium of cell-membrane adenosine triphosphatase activity. Biochem. J. 99, 232–238.

    PubMed  CAS  Google Scholar 

  • Fagan J. B and Racker E. (1977) Reversible inhibition of (Na+-K+)-ATPase by Mg2+, adenosine triphosphate and K. Biochemistry 16, 152–158.

    PubMed  CAS  Google Scholar 

  • Fahn S. and Cote L. J, (1968) Regional distribution of sodium-potassium activated adenosine triphosphatase in the brain of the Rhesus monkey. J. Neurochem. 15, 433–436.

    PubMed  CAS  Google Scholar 

  • Fahn S. Hurley M. R., Koval G. J., and Albers R. W. (1966a) Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. J Biol. Chem. 241, 1890–1895.

    PubMed  CAS  Google Scholar 

  • Fahn S., Koval G. J, and Albers R. W. (1966b) Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. J Biol. Chem. 241, 1882–1889.

    PubMed  CAS  Google Scholar 

  • Festoff B W. and Appel S. H. (1968) Effect of diphenylhydantoin on synaptosome Na+, K+-ATPase. J Clin. Invest. 47, 2752–2758.

    PubMed  CAS  Google Scholar 

  • Fiske C. H. and Subbarow Y. (1925) The calorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400.

    CAS  Google Scholar 

  • Fishman P. H., Moss J., and Vaughan M. (1976) Uptake and metabolism of gangliosides in transformed mouse fibroblasts. Relationship of ganglioside structure to choleragen response. J Biol. Chem. 251, 4490–4494

    PubMed  CAS  Google Scholar 

  • Folmar L. C (1978) In vitro inhibition of rat brain ATPase, PNPPase and ATP-32Pi exchange by chlorinated-diphenyl ethanes and cyclodiene insecticides. Bull Environ Contam Tox 19, 481–487

    CAS  Google Scholar 

  • Forbush B., III, Kaplan J H, and Hoffman J. F. (1978) Characterization of a new photoaffinity derivative of ouabain: Labelling of the large polypeptide and of a proteolipid component of the Na,K-ATPase. Biochemisty 17, 3667–3676.

    CAS  Google Scholar 

  • Formby B. (1975) Age-dependent changes in (Na,K)-ATPase in brains of mice susceptible to seizures. Experientia 31, 315–316.

    PubMed  CAS  Google Scholar 

  • Froehlich J. P., Albers R. W., Koval G. J., Goebel R., and Berman M. (1976) Evidence for a new intermediate state in the mechanism of (Na+ + K+)-adenosine triphosphatase. J. Biol. Chem. 251, 2186–2188.

    PubMed  CAS  Google Scholar 

  • Fukushima Y. and Tonomura Y. (1973) Two kinds of high energy phosphorylated intermediate, with and without bound ADP in the reaction of Na+-K+-dependent ATPase. J. Biochem. (Tokyo) 74, 135–142.

    PubMed  CAS  Google Scholar 

  • Geel S. E., Valcana T., and Timiras P. S. (1967) Effect of neonatal hypothyroidism and of thyroxine on l-(14C)-lucine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of the rat. Brain Res. 4, 143–150.

    PubMed  CAS  Google Scholar 

  • Gilbert J. G, Wyllie M. G., and Davison D. V. (1975) Nerve terminal ATPase as possible trigger for neurotransmitter release. Nature 255, 237–238.

    PubMed  CAS  Google Scholar 

  • Giotta G. J. (1975) Native (Na+ + K+)-dependent adenosine triphosphatase has two trypsin-sensitive sites. J Biol Chem 250, 5159–5164.

    PubMed  CAS  Google Scholar 

  • Glick N. B. (1972) Inhibition of Transport Reactions. A. Inhibitors of ATPase. NaK-ATPase and Related Enzymic Activities, in Metabolic Inhibitors (Quastel J. H., Kates M., and Hochester R. M., eds.), Academic, New York, London.

    Google Scholar 

  • Glynn I. M. (1957) The action of cardiac glycosides on sodium and potassium movements in human red cells. J. Physiol. (Lond.) 136, 148–173.

    PubMed  CAS  Google Scholar 

  • Glynn I. M. (1963) Transport of adenosine triphosphatase in electric organ. The relation between ion transport and oxidative phosphorylation. J Physiol. (Lond.) 169, 452–465.

    PubMed  CAS  Google Scholar 

  • Godfraind T., Koch M.-C., and Verbeke N. (1974) The action of EGTA on the catecholamines stimulation of rat brain Na-K-ATPase. Biochem. Pharmacol 23, 3505–3511.

    PubMed  CAS  Google Scholar 

  • Grasso A. (1967) A sodium-and potassium-stimulated adenosine triphosphatase in the cockroach nerve cord. Life Sci. 6, 1911–1918.

    PubMed  CAS  Google Scholar 

  • Green I. and Mommaerts W. F. H. M. (1953) Adenosine triphosphatase systems of muscle. I. An electrotitrimetic method of measurement. J. Biol. Chem. 202, 541–549.

    PubMed  CAS  Google Scholar 

  • Gurd F. R. N and Murray G. R., Jr (1954) Preparation and properties of serum and plasma proteins. XXXIX. The interaction of human serum albumin with plumbous ions. J. Am. Chem Soc 76, 187–190.

    CAS  Google Scholar 

  • Hackenberg H. and Krieglstein J. (1972) Comparative study on the inhibition of Na+, K+-ATPase by chlorpromazine, promazine, imipramine and their monodesmethyl metabolites. Naunyn-Schmiedebergs Arch. Pharmacol. 247, 63–73.

    Google Scholar 

  • Hansen O. (1976) Non-uniform populations of g-strophanthin binding sites of (Na+ + K+)-activated: ATPase apparent conversion to uniformity by K+. Biochim. Biophys. Acta 433, 383–392.

    CAS  Google Scholar 

  • Hart W. M., Jr. and Titus E. O. (1973a) Isolation of a protein component of sodium-potassium transport: Adenosine triphosphatase containing ligand-protected sulfhydryl groups. J. Biol. Chem. 248, 1365–1371.

    PubMed  CAS  Google Scholar 

  • Hart W. M., Jr. and Titus E. O. (1973b) Sulfhydryl groups of Na+, K+-ATPase: Protection by physiological ligands and exposure by phosphorylation. J. Biol Chem. 248, 4674–4681.

    PubMed  CAS  Google Scholar 

  • Hasie R. J. A. (1965) The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem. J. 96, 404–412.

    Google Scholar 

  • Heinz E. and Hoffman J. F. (1965) Phosphate incorporation and Na, K-ATPase activity in human red blood cell ghosts. J. Cell Comp. Physiol. 65, 31–43.

    CAS  Google Scholar 

  • Herd P. A., Horwitz B. A., and Smith R. E. (1970) Norepinephrine-sensitive Na+/K+-ATPase activity in brown adipose tissue. Experientia 26, 825–826

    PubMed  CAS  Google Scholar 

  • Hertz L., Schousboe A., Formby B., and Lennox-Buchthal M. (1974) Some age-dependent biochemical changes in mice susceptible to seizures. Epilepsia 15, 619–631.

    PubMed  CAS  Google Scholar 

  • Hexum T. D. (1974) Studies on the reaction catalyzed by transport (Na,K) adenosine triphosphatase. I. Effects of divalent metals. Biochem. Pharmacol. 23, 3441–3447.

    PubMed  CAS  Google Scholar 

  • Hexum T. D. (1977) The effect of catecholamines on transport (Na,K) adenosine triphosphatase. Biochem. Pharmacol. 26, 1221–1227.

    PubMed  CAS  Google Scholar 

  • Hoffman J. F. (1962) The active transport of sodium by ghosts of human red blood cells. J Gen. Physiol. 45, 837–859.

    PubMed  CAS  Google Scholar 

  • Hokin L. E. (1973) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J. Biol. Chem. 248, 2593–2605.

    PubMed  CAS  Google Scholar 

  • Hokin L. W. and Hokin M. R. (1963) Biological transport. Ann. Rev. Biochem 32, 553–578.

    PubMed  CAS  Google Scholar 

  • Hokin L. E., Dahl J. L., Deupree J. D., Dixon J. F., Hackney J. F., and Perdue J. F. (1973) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias J. Biol. Chem 248, 2593–2605.

    PubMed  CAS  Google Scholar 

  • Huang W. and Askari A. (1978) Na,K+-ATPase: On the nature of the “cross-1mked” subunit obtained in the presence of O-phenanthroline and cupric ion. Biochem. Biophys. Res. Commun. 82, 1314–1319.

    PubMed  CAS  Google Scholar 

  • Huang W and Askari A (1979) Na+,K+-ATPase: Effects of detergents on the cross-linking of subunit in the presence of Cu2+ and O-phenanthroline Biochim. Biophys. Acta 578, 547–552.

    PubMed  CAS  Google Scholar 

  • Hudgins P. M. and Bond G. H. (1977) (Mg2+ + K+)-dependent inhibition of Na,K-ATPase due to a contaminant in equine muscle ATP. Biochem Biophys. Res. Commun. 77, 1024–1029.

    PubMed  CAS  Google Scholar 

  • Israel M. A. and Kuriyama K. (1971) Effect of in vivo ethanol administration on adenosine triphosphatase activity of subcellular fractions of mouse brain and liver. Life Sci. 10, 591–599.

    CAS  Google Scholar 

  • Iwangoff P., Enz A., and Chappeus A. (1974) Effect of adrenergic blockers on the activation of brain ATPase by noradrenaline. Experientia 30, 688.

    Google Scholar 

  • Jarnefelt J. (1961) Inhibition of the brain microsomal ATPase by depolarizing agents. Biochim Biophys Acta 48, 111–116.

    PubMed  CAS  Google Scholar 

  • Jarnefelt J. (1964) Conversion of the Na+ and K+ independent art of the brain microsomal ATPase to a form requiring added Na+ and K+. Biochem Biophys Res Commun 17, 330–334.

    CAS  Google Scholar 

  • Jean D. H. and Albers R. W (1976) Immunochemical studies on the large polypeptide of Electrophorous electroplax (Na+ + K+)-ATPase. Biochim. Biophys. Acta 452, 219–226.

    PubMed  CAS  Google Scholar 

  • Johnstone R. M. (1963) Sulfhydryl Agents, Arsenicals, in Metabolic In-hibitors, Vol. 2. (Hochster R. M. and Quastel J H., eds.), Academic, New York.

    Google Scholar 

  • Jones V. D., Lockett G., and Landon E. J. (1965) A cellular action of mercurial diuretics. J Pharmacol. Exp Ther. 147, 23–31.

    PubMed  CAS  Google Scholar 

  • Jorgensen P. L. (1974) Purification of Na+,K+-ATPase: Active site determination of criteria of purity. Ann. NY Acad. Sci. 242, 36–52.

    PubMed  CAS  Google Scholar 

  • Jorgensen P. L. and Skou J. C. (1971) Purification and characterization of (Na+ + K+)-ATPase. I. The influence of detergents on the activity of (Na+ + K+)-ATPase in preparations from the outer medulla of rabbit kidneys. Biochim. Biophys. Acta 233, 366–380.

    PubMed  CAS  Google Scholar 

  • Josephson L. and Cantley L. C. (1977) Isolation of a potent (Na-K)-ATPase inhibitor from striated muscle. Biochemistry 16, 4572–4578.

    PubMed  CAS  Google Scholar 

  • Kahlenberg A., Dulak N. C., Dixon J. F., Galsworthy P. R., and Hokin L. E. (1969) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. V. Partial purification of the Lubrol-solubilized beef brain enzyme. Arch. Biochem. Biophys. 131, 253–262.

    PubMed  CAS  Google Scholar 

  • Kahlenberg A., Galsworthy P. R., and Hokin L. E. (1968) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. II. Characterization of the acyl phosphate intermediate as an l-glutamyl-gamma-phosphate residue. Arch. Biochem. Biophys. 126, 331–324.

    PubMed  CAS  Google Scholar 

  • Kanazawa T., Saito M., and Tonomura Y. (1967) Properties of a phosphorylated protein as a reaction intermediate of Na+-K+-sensitive ATPase. J. Biochem. (Tokyo) 61, 555–566.

    PubMed  CAS  Google Scholar 

  • Kanazawa T., Saito M., and Tonomura Y. (1970) Formation and decomposition of a phosphorylated intermediate in the reaction of Na+-K+-dependent ATPase. J. Biochem. (Tokyo) 67, 693–711.

    PubMed  CAS  Google Scholar 

  • Karlish S. J, (1980) Characterization of conformational changes in (Na,K)-ATPase labelled with fluorescein at the active site. J. Bioenerg. Biomemb. 12, 111–136.

    CAS  Google Scholar 

  • Klara P. M., Brizzee K. R., Chen I.-Li, and Yates R. D. (1978) Ultrastructural localization of ATPase activity in the dog area postrema. Brain Res. 146, 165–171.

    PubMed  CAS  Google Scholar 

  • Klotz I. M., Urquhart J. M., and Fiess H. A. (1952) Interactions of metal ions with the sulfhydryl group of serum albumin. J. Am. Chem Soc. 74, 5537–5538.

    CAS  Google Scholar 

  • Knox W. H., Perrier R. G., and Sen A. K. (1972) Effect of chronic admmistration of ethanol on Na+,K+-ATPase activity in areas of the cat brain. J. Neurochem. 19, 2881–2884.

    PubMed  CAS  Google Scholar 

  • Koch R. B. (1969) Fractionation of olfactory tissue homogenates. Isolation of a concentrated plasma membrane fraction. J. Neurochem. 16, 145–157.

    PubMed  CAS  Google Scholar 

  • Koch R. B., Cutkomp L. K., and Do F. M. (1969) Chlorinated hydrocarbon insecticide inhibition of cockroach and honey bee ATPases. Life Sci. 8, 289–297.

    PubMed  CAS  Google Scholar 

  • Kurokawa M., Sakamoto T., and Kato M. (1965) Distribution of sodiumplus-potassium-stimulated adenosine-triphosphatase activity in isolated nerve ending particles. Biochem. J. 97, 833–844.

    PubMed  CAS  Google Scholar 

  • Kyte J. (1971) Phosphorylation of a purified (Na+ + K+) adenosine triphosphatase. Biochem Biophys. Res. Commun. 43, 1259–1265.

    PubMed  CAS  Google Scholar 

  • Kyte J. (1972) Properties of the two polypeptides of sodium and potassium-dependent adenosine triphosphatase. J. Biol. Chem. 247, 7642–7649.

    PubMed  CAS  Google Scholar 

  • Kyte J. (1975) Structural studies of sodium and potassium ion-activated adenosine triphosphatase. The relationship between molecular structure and the mechanism of active transport. J. Biol. Chem. 250, 7443–7449.

    PubMed  CAS  Google Scholar 

  • Kyte J. (1976a) Immunoferritm determination of the distribution of the (Na+,K+)-ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment. J. Cell. Biol. 68, 287–303.

    PubMed  CAS  Google Scholar 

  • Kyte J (1976b) Immunoferritm determination of the distribution of the (Na+,K+)-ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment. J. Cell. Biol. 68, 304–381.

    PubMed  CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    PubMed  CAS  Google Scholar 

  • Leon A., Facci L, Toffano G., Sonnino S., and Tettamanti G. (1981) Activation of (Na+,K+)-ATPase by nanomolar concentrations of GM1 ganghoside. J. Neurochem. 37, 350–357.

    PubMed  CAS  Google Scholar 

  • Liang S. and Winter C. G. (1977) Digitonin-induced changes in subunit arrangement in relation to some in vitro activities of the Na+,K+-ATPase. J. Biol. Chem. 252, 8278–8284.

    PubMed  CAS  Google Scholar 

  • Lindenmayer G. E., Laughter A. H., and Schwartz A. (1968) Incorporation of inorganic phosphate-32 into a Na+,K+-ATPase preparation. A stimulation by ouabain. Arch. Biochem. Biophys. 127, 187–192.

    PubMed  CAS  Google Scholar 

  • Lindenmayer G. E. and Schwartz A. (1970) Conformational changes induced in Na+,K+-ATPase by ouabain through a K+-sensitive reduction Kinetic and spectroscopic studies. Arch. Biochem. Blophys. 140, 371–378.

    CAS  Google Scholar 

  • Madsen N. B. (1963) A Comprehensive Treatial, in Metabolic Inhibitors, Vol. 2 (Hochster R. M. and Quastel J. H., eds.), Academic, New York.

    Google Scholar 

  • Matsumura F. and Patil K. C. (1969) Adenosine triphosphatase sensitive to DDT in synapses of rat brain. Science 166, 121–122.

    PubMed  CAS  Google Scholar 

  • Medzihardsky F., Kline M. H, and Hokin L. E. (1967) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. I. Solubilization, stabilization and estimation of apparent molecular weight. Arch. Biochem. Biophys. 121, 311–316.

    Google Scholar 

  • Millonig G. (1961) Advantages of a phosphate buffer for OsO4 solution in fixation. J. Appl. Physiol. 32, 1637.

    Google Scholar 

  • Moczydlowski E. G. (1981a) Characterization of 2′,3′-O-(2,4,6-trinitro-cyclohexadienylidene) adenosine 5′-triphosphate as a fluorescent probe of the ATP site of sodium and potassium transport adenosine triphosphatase. Determination of nucleotide binding stoichiometry and ion induced changes in affinity for ATP. J. Biol. Chem. 256, 2346–2356.

    PubMed  CAS  Google Scholar 

  • Moczydlowski E. G. (1981b) Inhibition of sodium and potassium adenosine triphosphatase by 2′,3′-O-(2,4,6-trinitro-cyclohexadienylidene) adenine nucleotides. Implication for the structure and mechanism of the Na.K pump. J. Biol. Chem 256, 2357–2366.

    PubMed  CAS  Google Scholar 

  • Nagano K., Kanazawa T., Mizuno N., Tashima Y., Nakao T., and Nakao M. (1965) Some acyl phosphate-like properties of P32-labelled sodium-potassium-activated adenosine triphosphatase. Biochem Biophys. Res. Commun. 19, 759–764.

    PubMed  CAS  Google Scholar 

  • Ottolenghi P. and Ellory J. C. (1983) Radiation inactivation of (Na,K)-ATPase, an enzyme showmg multiple radiation-sensitrve domains. J. Biol. Chem. 258, 14895–14907.

    PubMed  CAS  Google Scholar 

  • Partington C. R. and Daly J. W. (1979) Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes. Mol. Pharmacol. 15, 484–491.

    PubMed  CAS  Google Scholar 

  • Peters R. A., Shorthouse M., and Walshe J. M. (1966) Studies on the toxicity of copper. II. The behaviour of microsomal membrane ATPase of the pigeon’s brain tissue to copper and some other metallic substance. Proc. Roy Soc Ser. B. 166, 285–294

    CAS  Google Scholar 

  • Petrali E. H. and Sulakhe P. V. (1980) Isolation of plasma membrane fraction highly enriched in ouabain-sensitive Na+-K+-ATPase from rat brain white matter. Int. J. Biochem. 12, 407–420.

    PubMed  CAS  Google Scholar 

  • Phillis J. W. and Wu P. H. (1981) Catecholamines and the sodium pump in excitable cells. Prog. Neurobiol 17, 141–184.

    PubMed  CAS  Google Scholar 

  • Portuis H. J. and Repke K. (1964) Versuch emer analyse der beziehunge zwischen chemischer struktur und digitalis-ahnlicher wirksamkeit an der zezeptorebene Arzneim. Forsch. 14, 1073–1077.

    Google Scholar 

  • Post R. L., Kume S., Tobin T., Orcutt B., and Sen A. K. (1969) Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J. Gen. Physlol. 54, 306–326

    CAS  Google Scholar 

  • Post R. L., Sen A. K., and Rosenthal A. S. (1965) A phosphorylated intermediate tn adenosine triphosphate-dependent sodium and potassium transport across kidney membranes. J Biol. Chem. 240, 1437–1445.

    PubMed  CAS  Google Scholar 

  • Powis D. A., Wattus G. D., and Glynn I. (1981) The stimulatory effect of calcium on sodium-potassium ATPase of nervous tissue. FEBS Lett 126, 285–288.

    PubMed  CAS  Google Scholar 

  • Quastel J. H. (1970) Transport process at the brain cell membrane. Neurosci. Res. 3, 1–41.

    CAS  Google Scholar 

  • Racker E. (1976) Structure and function of ATP-driven ion pumps. Trends Biochem Sci. 1, 244–247.

    CAS  Google Scholar 

  • Rawson M. D. and Pincus J. H. (1968) The effect of diphenylhydantoin on sodium, potassium, magnesium-activated adenosine triphosphatase in microsomal fraction of rat and guinea pig brain and on whole homogenates of human brain. Biochem. Pharmacol. 17, 573–579.

    PubMed  CAS  Google Scholar 

  • Reichert W. H. (1975) Cerebral magnesium and sodium-potassium ATPase following audiogenic seizure in mice. Exp. Neurol. 49, 596–600.

    PubMed  CAS  Google Scholar 

  • Rendi R. and Uhr M. L (1964) Sodium, potassium-requiring adenosine triphosphatase activity. I. Purification and properties. Biochim. Biophys. Acta 89, 520–531.

    PubMed  CAS  Google Scholar 

  • Riehl R. (1980) Ultracytochemical localization of Na+, K+-activated ATPase in the oocytes of Heterandria formosa Agassiz, 1853 (Pisces, Poecilliadae). Reprod Nutr. Develop. 20, 191–196.

    CAS  Google Scholar 

  • Robinson J. D., Lowinger J., and Bettinger B. (1968) Chlorpromazine: differential effects on membrane-bound enzymes from rat brain. Biochem Pharmacol. 17, 1113–1116.

    PubMed  CAS  Google Scholar 

  • Rodriguez de Lores Arnaiz G. and Mistrorigo de Pacheco M. (1978) Regulation of (Na+,K+) adenosine triphosphatase of nerve ending membranes. Action of norepinephrine and a soluble factor. Neurochem. Res. 3, 733–744.

    Google Scholar 

  • Rosenblatt D. E., Lauter C. J., and Trams E. G. (1976) Deficiency of a Ca2+-ATPase in brains of seizure-prone mice. J. Neurochem. 27, 1299–1304.

    PubMed  CAS  Google Scholar 

  • Ruoho A and Kyte J. (1974) Photoaffinity labelling of the ouabain-binding site on (Na+ + K+) adenosine triphosphatase. Proc Natl Acad. Sci. USA 71, 2352–2356.

    PubMed  CAS  Google Scholar 

  • Schaefer A., Komlos M., and Seregi A. (1975) Lipid peroxidation as the cause of the ascorbic acid-induced decrease of adenosine triphosphatase activities of rat brain microsomes and its inhibition by biogenic amines and psychotropic drugs. Biochem Pharmacol. 24, 1781–1786.

    PubMed  CAS  Google Scholar 

  • Schaefer A., Seregi A., and Komlos M. (1974) Ascorbic acid-like effect of the soluble fraction of rat brain on adenosine triphosphatase and its relation to catecholamines and chelating agents. Biochem. Pharmacol. 23, 2257–2271.

    PubMed  CAS  Google Scholar 

  • Schaefer A., Unyi G., and Pfeifer A. K. (1972) The effects of a soluble factor and of catecholamines on the activity of adenosine triphosphatase in subcellular fractions of rat brain. Biochem. Pharmacol. 21, 2289–2294.

    PubMed  CAS  Google Scholar 

  • Schatzmann H. J. (1953) Herzglykoside als hemmstoffe fur der aktiven kalium-und natriumtransport durch dei Erythrocytenmembran. Helv Physiol. Pharmac. Acta 11, 346–354.

    CAS  Google Scholar 

  • Schirachi D. Y., Allard A. A., and Trevor A. J. (1970) Partial purification and ouabain sensitivity of Lubrol-extracted sodium-potassium transport adenosine triphosphatases from brain and cardiac tissue. Biochem. Pharmacol. 19, 2893–2906.

    Google Scholar 

  • Schurmans-Stekhovens F. and Bonting S. L. (1981) Transport adenosine triphosphatase: Properties and functions. Physiol. Rev. 61, 1–76.

    Google Scholar 

  • Schwartz A., Bachelard H S., and McIlwain H (1962) The sodium, potassium-stimulated adenosine triphosphatase activity and other properties of cerebral microsomal fractions and subfractions. Biochem J. 84, 626–637.

    PubMed  CAS  Google Scholar 

  • Schwartz A., Lindenmayer G. F, and Allen J. C. (1975) The sodium-potassium adenosine triphosphatase. Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27, 3–134.

    PubMed  CAS  Google Scholar 

  • Schwartz A., Matsui H., and Laughter A. H. (1968) Tritrated digoxin binding to Na+,K+-activated adenosine triphosphatase: Possible allosteric site. Science 159, 323–325.

    Google Scholar 

  • Seiler F. R., Sedlacek N. N., Luben G., and Wiegandt H. (1976) Alteration of the lymphocyte surface by vibrio cholerae neuraminidase, gangliosides and lysolecithins. Behring Inst. Mitt. 59, 22–29.

    CAS  Google Scholar 

  • Sen A. K., Tobin T., and Post R. L. (1969) A cycle for ouabain inhibition of sodium-and potassium-dependent adenosine triphosphate. J Biol. Chem. 244, 6596–6604

    PubMed  CAS  Google Scholar 

  • Shamoo A E. and Brodsky W. A. (1972) Functions of the E-ATP and E-P complex in the membrane ATPase reaction. Biochim Biophys. Acta 255, 220–230.

    PubMed  CAS  Google Scholar 

  • Siegel G. J. and Albers R. W. (1967) Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. IV. Modification of response to sodium and potassium by arsenite plus 2,3-dimercaptopropanol. J. Biol. Chem. 242, 4972–4979.

    PubMed  CAS  Google Scholar 

  • Siegel G. J. and Fogt S. M. (1977) Inhibition by lead ion of Electrophorus electroplax (Na+ + K+)-adenosine triophosphatase and K+-p-nitrophenylphosphatase J. Biol. Chem 252, 5201–5205.

    PubMed  CAS  Google Scholar 

  • Seigel G. J. and Albers R. W. (1967) Sodium-potassium-activated adenosine triphosphatase. VI. Characterization of the phosphoprotein formed from orthophosphate in the presence of ouabain. J Biol Chem. 244, 3264–3269.

    Google Scholar 

  • Skou J. C. (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys. Acta 23, 394–401.

    PubMed  CAS  Google Scholar 

  • Skou J. C. (1960) Further mvestigations on a Mg2+ + Na+ activated adenosine triphosphatase possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys Acta 42, 6–23.

    CAS  Google Scholar 

  • Skou J. C. (1962) Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na+ and K+. Biochim. Biophys. Acta 58, 314–325.

    PubMed  CAS  Google Scholar 

  • Skou J. C. (1971) The Role of the Phosphorylated Intermediates in the Reaction of the Na+,K+-Activated Enzyme System, in Membrane Bound Enzymes (Porcellati G. and di Jeso F., eds.), Plenum, New York.

    Google Scholar 

  • Skou J. C. (1981) Eosin, a fluorescent probe of ATP binding to the (Na+ + K+) ATPase. Biochim. Biophys. Acta 647, 232–240.

    PubMed  CAS  Google Scholar 

  • Skou J. C. and Hilberg C. (1965) The effect of sulphydryl-blocking reagents and of urea on the (Na+ + K+)-activated enzyme system. Biochim. Biophys Acta 110, 359.

    PubMed  CAS  Google Scholar 

  • Skulskii I. A., Manninen V, and Jarnefelt J, (1973) Interaction of thallous ions with the cation transport mechanism in erythrocytes. Biochim. Biophys Acta 298, 702–709

    PubMed  CAS  Google Scholar 

  • Somogyi J., Budai M., Nyiro L., Kaluza G. A., Nagel W., and Willig F (1969) Activity and structural changes in Mg2+-dependent and Na+,K+-activated adenosine triphosphatase prepared from rat brain following detergent treatment. Acta Biochem. Biophys. Acad. Sci (Hung.) 4, 219–236.

    CAS  Google Scholar 

  • Specht S. C. and Robinson J D (1973) Stimulation of the (Na+ + K+)-dependent adenosine triphosphatase by amino acids and phosphatidylserine: Chelation of trace metal inhibitors. Arch. Biochem Biophys. 154, 314–323.

    PubMed  CAS  Google Scholar 

  • Squires R. F. (1965) On the interactions of Na+, K+, Mg2+ and ATP with the (Na+ + K+)-activated ATPase from rat brain. Biochem. Biophys. Res. Commun. 19, 27–32.

    CAS  Google Scholar 

  • Stahl W. L., Sattin A., and McIlwain H. (1966) Separation of adenosine diphosphate-adenosine triphosphate-exchange activity from the cerebral microsomal sodium plus potassium ion-stimulated adenosine triphosphatase. Biochem. J. 99, 404–412.

    PubMed  CAS  Google Scholar 

  • Stefanovic V., Ebel A., Hermetet J. C., and Mandel P. (1974) Na+-K+-ATPase activity in brain regions of C57 and DBA mice. J. Neurochem. 22, 1139–1141.

    PubMed  CAS  Google Scholar 

  • Svoboda P. and Mosinger B. (1981a) Catecholamines and the brain microsomal Na,K-adenosine triphosphatase. I. Protection against lipoperoxidative damage. Biochem. Pharmacol. 30, 427–432

    PubMed  CAS  Google Scholar 

  • Svoboda P. and Mosinger B. (1981b) Catecholamines and the brain microsomal Na,K-adenosine triphosphatase. II. The mechanism of action. Biochem. Pharmacol 30, 433–439.

    PubMed  CAS  Google Scholar 

  • Sweadner K. J. (1977) Cross-linking and modification of Na,K-ATPase by ethyl acetimidate. Biochem. Biophys. Res. Commun. 78, 962–969.

    PubMed  CAS  Google Scholar 

  • Sweadner K. J. (1978) Purification from brain of an intrinsic membrane protein fraction enriched in (Na+ + K+)-ATPase. Biochim. Biophys. Acta 508, 486–499.

    PubMed  CAS  Google Scholar 

  • Sweadner K. J. (1979) Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation and difference in affinity for strophanthidin. J. Biol Chem. 254, 6060–6067.

    PubMed  CAS  Google Scholar 

  • Tanaka R. (1974) Role of lipids in activation of Na+,K+-dependent ATPase and K+-dependent phosphatase of the brain. Rev. Neurosci. 1, 181–230.

    CAS  Google Scholar 

  • Tanford C. (1952) The effect of pH on the combination of serum albumin with metals. J. Am. Chem. Soc. 74, 211–215.

    CAS  Google Scholar 

  • Ting-Beall H. P., Clark D. A., Snelter C. H., and Wells W. W. (1973) Studies on the interaction of chick brain microsomal (Na+ + K+)-ATPase with copper. Biochim Biophys. Acta 291, 229–236.

    PubMed  CAS  Google Scholar 

  • Tobin T., Akera T., Baskin S. I., and Brody T. M. (1973) Calcium ion and sodium-and potassium-dependent adenosine triphosphatase: Its mechanism of inhibition and identification of the E1-P intermediate. Mol. Pharmacol. 9, 336–349.

    PubMed  CAS  Google Scholar 

  • Tobin T. and Sen A. K. (1970) Stability and ligand sensitivity of 3H-ouabain binding to Na+,K+-ATPase. Biochim. Biophys. Acta 198, 120–131.

    PubMed  CAS  Google Scholar 

  • Toda G. (1968) The effects of cations on the inhibition of sodium-and potassium-activated adenosine triphosphatase by beryllium. J. Biochem. (Tokyo) 64, 457–464.

    PubMed  CAS  Google Scholar 

  • Toffano G., Benvegnu D., Bonetti A. C., Leon A., Orlando P., Ghidoni R., and Tettamanti G. (1980) Interactions of GM1 ganglioside with crude rat brain neuronal membranes. J. Neurochem. 35, 861–866.

    PubMed  CAS  Google Scholar 

  • Trauner D. A. (1980) Regional cerebral Na+,K+-ATPase activity following octanoate administration. Pediatr. Res. 14, 844–845.

    PubMed  CAS  Google Scholar 

  • Uesugi S., Kahlenberg A., Medzihrodsky F., and Hokin L. E. (1969) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. IV. Properties of a Lubrol-solubilized beef brain microsomal enzyme. Arch. Biochem. Biophys 130, 156–163.

    PubMed  CAS  Google Scholar 

  • Uesugi S., Dulak N. C., Dixon J. F., Hexum T. I., Dahl J. L., Perdue J. F, and Hokin L. E. (1971) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. I. Large-scale partial purification and properties of a Lubrol-solubilized bovine brain enzyme. J. Biol. Chem. 269, 531–543.

    Google Scholar 

  • Valcana T. and Timiras P. S. (1969) Effect of hypothyroidism on ionic metabolism and Na-K-activated ATP phosphohydrolase activity in the developing rat brain. J. Neurochem. 16, 935–943.

    PubMed  CAS  Google Scholar 

  • Van der Krogt J. A. and Belfroid R. D. (1980) Characterization and localization of catecholamine-susceptible Na-K ATPase activity of rat striatum: Studies using catecholamine receptor (ant)agonists and lesion techniques. Biochem. Pharmacol. 29, 857–868.

    PubMed  Google Scholar 

  • Van Winkle W. B., Allen J. C., and Schwartz A. (1972) The nature of the transport ATPase-digitalis complex. III. Rapid binding studies and effects of ligands on the formation and stability of magnesium plus phosphate-induced glycoside-enzyme complex. Arch. Biochem. Biophys. 151, 85–92.

    PubMed  Google Scholar 

  • Vizi E. S. (1979) Pre-synaptic modulation of neurochemical transmission. Prog. Neurobiol. 12, 181–290.

    PubMed  CAS  Google Scholar 

  • Vizi E. S. (1980) Modulation of cortical release of acetylcholine by noradrenaline released from nerves arising from the rat locus coeruleus. Neuroscience 5, 2139–2144.

    PubMed  CAS  Google Scholar 

  • Whitaker J. N. (1975) The antigenicity of myelin encephalitogenic protein. Production of antibodies to encephalitogenic protein with deoxyribonucleic acid-encephalitogenic protein complexes. J. Immuno. 114, 823–828.

    CAS  Google Scholar 

  • Whittaker V. P. (1959) The isolation and characterization of acetylcholine-containing particles from brain. Biochem. J. 72, 694–706.

    PubMed  CAS  Google Scholar 

  • Whittam R. (1962) The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem. J. 84, 110–118.

    PubMed  CAS  Google Scholar 

  • Whittam R. and Chipperfield A. R (1973) Ouabain binding to the sodium pump in plasma membranes isolated from ox brain. Biochim. Biophys. Acta 307, 563–577

    PubMed  CAS  Google Scholar 

  • Whittam R., Wheeler K. P, and Blake A. (1964) Oligomycin and active transport reactions in cell membranes. Nature 203, 720–724.

    PubMed  CAS  Google Scholar 

  • Wilson W. E., Sivitz W. I., and Hanna L. T (1970) Inhibition of calf brain membranal sodium-and potassium-dependent adenosine triphosphatase by cardioactive sterols. A binding site model. Mol Pharmacol. 6, 449–459.

    PubMed  CAS  Google Scholar 

  • Winter C. G (1972) Differential effects of digitonin on some enzyme activities of the sodium pump. Biochim. Biophys. Acta 266, 135–143.

    PubMed  CAS  Google Scholar 

  • Wood J. G., Jean D. H., Whitaker J. N., McLaughlin B. J., and Albers W. (1977) Immunocytochemical localization of the sodium, potassium activated ATPase in knifefish brain. J. Neurocyto. 6, 571–581.

    CAS  Google Scholar 

  • Woodbury D M. (1955) Effect of diphenylhydantoin on electrolytes and radio sodium turnover in brain and other tissues of normal hyponatremic and postictal rats. J. Pharmacol. Exp Ther 115, 74–95.

    PubMed  CAS  Google Scholar 

  • Wu P. H. and Phillis J. W. (1978) Effects of α-and β-adrenergic blocking agents on the biogenic amine stimulated (Na+,K+) ATPase of rat cerebral cortical synaptosomal membrane. Gen. Pharmacol 9, 421–424.

    PubMed  CAS  Google Scholar 

  • Wu P. H. and Phillis J. W. (1979a) Receptor-mediated noradrenaline stimulation of (Na+-K+) ATPase in rat brain cortical homogenates. Gen. Pharmacol. 10, 189–192.

    PubMed  CAS  Google Scholar 

  • Wu P. H. and Phillis J. W (1979b) Metergoline antagonism of 5-hydroxytryptamine-induced activation of rat cortical (Na+-K+) ATPase. J. Pharm. Pharmacol. 31, 782–784.

    PubMed  CAS  Google Scholar 

  • Wu P. H. and Phillis J W (1979c) Effects of vanadate on brain (Na+,K+) ATPase and p-nitrophenylphosphatase. Interactions with mono-and di-valent ions and with noradrenaline. Intl. J. Biochem. 10, 629–635.

    CAS  Google Scholar 

  • Wu P. H. and Phillis J. W (1980) Characterization of receptor-mediated catecholamine activation of rat brain cortical Na+-K+-ATPase. Intl. J. Biochem. 12, 353–359.

    CAS  Google Scholar 

  • Yamaguchi M. and Tonomura Y. (1979) Simultaneous bindmg of three Na+ and two K+ ions to Na+,K+-dependent ATPase and changes in its affinities for the ions induced by the formation of a phosphorylated intermediate. J. Biochem. (Tokyo) 86, 509–523.

    PubMed  CAS  Google Scholar 

  • Yamaguchi M. and Tonomura Y. (1980a) Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. I. Simultaneous binding of three sodium and two potassium or rubidium ions to the enzyme. J. Biochem. (Tokyo) 88, 1365–1375.

    PubMed  CAS  Google Scholar 

  • Yamaguchi M. and Tonomura Y. (1980b) Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. II. Acceleration of transition from a K+-bound form to a Na+-bound form by binding of ATP to a regulatory site of the enzyme. J. Biochem. (Tokyo) 88, 1377–1385.

    PubMed  CAS  Google Scholar 

  • Yamaguchi M and Tonomura Y. (1980c) Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. III. Marked changes in affinities for mono-valent cations induced by formation of an ADP-insensitive but not an ADP-sensitive phosphoenzyme. J. Biochem. (Tokyo) 88, 1387–1397.

    PubMed  CAS  Google Scholar 

  • Yap H. H., Desaiah D., Koch R. B., and Cutkomp L. K. (1972) Sensitivity of fish ATPase to polychlorinated biphenyls. Nature 233, 61–62.

    Google Scholar 

  • Yoda A. and Hokin L. E. (1970) On the reversibility of binding of cardiotonic steroids to a partially purified (Na + K)-activated adenosine triphosphatase from beef brain Biochem. Biophys. Res. Commun. 40, 880–886.

    PubMed  CAS  Google Scholar 

  • Yoshimura K. (1973) Activation of Na-K activated ATPase in rat brain by catecholamine J Biochem. (Tokyo) 74, 389–391.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Peter H. Yu

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Wu, P.H. (1986). Na+/K+-ATPase in Nervous Tissue. In: Boulton, A.A., Baker, G.B., Yu, P.H. (eds) Neurotransmitter Enzymes. Neuromethods, vol 5. Humana Press. https://doi.org/10.1385/0-89603-079-2:451

Download citation

  • DOI: https://doi.org/10.1385/0-89603-079-2:451

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-079-4

  • Online ISBN: 978-1-59259-610-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics