Skip to main content

Serotonin Receptors

  • Protocol
Receptor Binding

Part of the book series: Neuromethods ((NM,volume 4))

Abstract

Since the middle of the nineteenth century, physiologists have been aware of an endogenous vasoconstrictor substance. Often referred to as “vasotonin,” the factor was present in the serum of clotted blood. (1948) succeeded in isolating the compound and named it “serotonin.” The chemical structure was soon found to be 5-hydroxytryptamine (5-HT). Simultaneously and independently, Italian scientists were studying a substance found in high concentrations in enterochromaffin cells of the intestinal mucosa that was also eventually found to be 5-HT (Erpsamer and Asero, 1952). The synthetic production of 5-HT (Hamlin and Fischer, 1951) led to an explosion of research into the physiologic function of this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn H. S. and Makman M. H (1978) Serotonin sensitive adenylate cyclase activity in monkey anterior limbic cortex antagonism by molindone and other antipsychotic drugs Life Sci 23, 507–512.

    PubMed  CAS  Google Scholar 

  • Allen G. S and Banghart S. B (1979) Cerebral arterial spasm. Part 9. In vitro effects of nifedipine on serotonin-, phenylephrine-, and potassium-induced contractions of canine basilar and femoral arteries Neurosurg. 4, 37–42

    CAS  Google Scholar 

  • Allen G. S., Gross C J., Henderson L. M, and Chou S. N. (1976) Cerebral arterial spasm. Part 4: In vitro effects of temperature, serotonin, analogues, large nonphysiologic concentrations of serotonin and extracellular calcium and magnesium on serotonin-induced contractions of the canine basilar artery. J Neurosurg 44, 585–593.

    PubMed  CAS  Google Scholar 

  • Allen G. S., Henderson L. M., Chou S N., and French L A. (1974) Cerebral arterial spasm Part 1. In vitro contractile activity of vasoactive agents on canine basilar and middle cerebral arteries J. Neurosurg. 40, 433–441

    PubMed  CAS  Google Scholar 

  • Apperley E., Feniuk W., Humphrey P. P A, and Levy G. P (1980) Evidence for two types of excitatory receptor for 5-hydroxytryptamine in dog isolated vasculature, Brit J Plzarmacol. 68, 215–224.

    CAS  Google Scholar 

  • Barbaccia M L., Brunello N., Chuang D. M., and Costa E. (1983) Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat. J. Neurochem. 40, 1671–1679

    PubMed  CAS  Google Scholar 

  • Bennett J L. and Aghalanian G. K (1974) D-LSD binding to brain homogenates. possible relationship to serotonin receptors Life Sci. 15, 1935–1944

    CAS  Google Scholar 

  • Bennett Jr, J P and Snyder S H (1975) Stereospecific binding of d-lysergic acid diethylamide (LSD) to brain membranes relationship to serotonin receptors. Brain Res. 94, 523–544

    PubMed  CAS  Google Scholar 

  • Bennett Jr, J. P. and Snyder S H. (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes. relationship to postsynaptic serotonin receptors. Mol Pharmacol 12, 373–389

    PubMed  CAS  Google Scholar 

  • Berry-Kravis E. and Dawson G (1983) Characterization of an adenylate cyclase-linked serotonin (5-HT1) receptor in a neuroblastoma × brain explant hybrid cell line (NCB-20). J. Neurochem 40, 977–985

    PubMed  CAS  Google Scholar 

  • Biegon A., Rainbow T C., and McEwen B. S (1982) Quantitative autoradiography of serotonin receptors in the rat brain. Brain Res. 242, 197–204.

    PubMed  CAS  Google Scholar 

  • Bohr D. F, Goulet P. L., and Taquini A C. (1961) Direct tension recording from smooth muscle of resistance vessels from various organs Angiology 12, 478–485

    PubMed  CAS  Google Scholar 

  • Bradley P. B., Humphrey P. P A., and Williams R H. (1983) Are vascular ′d′ and ′5-HT2′ receptors for 5-hydroxytryptamme the same? Brit j Pharmacol 79, 295P

    Google Scholar 

  • Cerrito F and Raiteri M. (1979) Serotonin release is modulated by pre-synaptic autoreceptors Eur. J. Pharmacol 57, 427–430.

    PubMed  CAS  Google Scholar 

  • Cohen M L, Mason N, Wiley K. S, and Fuller R W. (1983) Further evidence that vascular serotonin receptors are of the 5-HT2 type. Biochem. Pharmacol. 32, 567–570

    PubMed  CAS  Google Scholar 

  • Cohen M. L, Fuller R W., and Wiley K. S. (1981) Evidence for 5-HT2 receptors mediating contraction in vascular smooth muscle. J Pharmacol. Exp. Ther. 218, 421–425

    PubMed  CAS  Google Scholar 

  • Colpaert F. C and Janssen P A. J (1983) The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacol 22, 993–1000.

    CAS  Google Scholar 

  • Cortes R, Palacios J M., and Pazos A. (1984) Visualisation of multiple serotonin receptors in the rat brain by autoradiography Brit J. Pharmacol 82(suppl), 202P.

    Google Scholar 

  • Coughlin S. R, Moskowitz M A., and Levine L. (1984) Identification of a serotonin type 2 receptor linked to prostacyclin synthesis in vascular smooth muscle cells. Biochem. Pharmacol. 33, 692–694.

    PubMed  CAS  Google Scholar 

  • Cox B and Ennis C. (1982) Characterization of 5-hydroxytryptaminergic autoreceptors in the rat hypothalamus. j Pharm. Pharmacol 34,438–441.

    PubMed  CAS  Google Scholar 

  • Creese I. and Snyder S H (1978) 3H-Spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus. Eur J. Pharmacol 49, 201–202.

    PubMed  CAS  Google Scholar 

  • Curro F A., Greenberg S., Verbeuren T J., and Vanhoutte P. M. (1978) Interaction between alpha adrenergic and serotonergic activation of canine saphenous veins J Pharmacol. Exp Ther 207, 936–949

    PubMed  CAS  Google Scholar 

  • DeClerck F. F. and Herman A. G (1983) Hydroxytryptamine and platelet aggregation Fed Proc. 42, 228–232.

    CAS  Google Scholar 

  • Deshmukh P P., Yamamura H. I, Woods L, and Nelson D. L (1983) Computer-assisted autoradiographic localization of subtypes of serotonin1 receptors in rat brain Brain Res 288, 338–343.

    PubMed  CAS  Google Scholar 

  • Dompert W. U, Glaser T., and Traber J (1985) 3H-TVXQ7821:Identification of 5-HT1 binding sites as target for a novel putative anxiolytic Naunyn-Schmledeberg’s Arch Pharmacol. 328, 467–470

    CAS  Google Scholar 

  • Edvinsson L and Hardebo J E (1976) Characterization of serotonin receptors in intracranial and extracranial vessels Acta Physiol Scand 97, 523–525.

    PubMed  CAS  Google Scholar 

  • Edvinsson L., Hardebo J. E., and Owman C (1978) Pharmacological analysis of 5-hydroxytryptamine receptors in isolated intracranial and extracranial vessels of cat and man Circ Res. 42, 143–151

    PubMed  CAS  Google Scholar 

  • Engel G., Gothert M., Muller-Schweinitzer E., Schlicker E., Sistonen L, and Stadler P A (1983) Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS, and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmiedeberg’s Arch Pharmacol. 324, 116–124.

    CAS  Google Scholar 

  • Engel G., Muller-Schweinitzer E, and Palacios J. M (1984) 2-[125Iodo] LSD, a new ligand for the characterisation and localisation of 5HT2 receptors Naunyn Schmiedeberg’s Arch. Pharmacol. 325, 328–336

    CAS  Google Scholar 

  • Enjalbert A., Bourgoin S., Hamon M., Adrien J, and Bockaert J. (1978a) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. Mol Pharmacol 14, 2–10.

    PubMed  CAS  Google Scholar 

  • Enjalbert A., Hamon M, Bourgoin S, and Bockaert J (1978b) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system Mol Pharmacol. 14, 11–23

    PubMed  CAS  Google Scholar 

  • Ennis C. and Cox B. (1982) Pharmacological evidence for the existence of two distinct serotonin receptors in rat brain. Neuropharmacol. 21, 41–44.

    CAS  Google Scholar 

  • Erpsamer V and Asero B. (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine Nature (Lond ) 168, 800–801

    Google Scholar 

  • Farnebo L. O. and Hamberger B. (1974) Regulation of [3H] 5-hy-droxytryptamine release from rat brain slices J Pharm. Pharmacol 26, 642–644.

    PubMed  CAS  Google Scholar 

  • Feniuk W, Humphrey P. P A, and Watts A D. (1983) Further evidence for the heterogeneity of vascular receptors for 5-HT. Brit j Pharmacol. 79, 296P

    Google Scholar 

  • Fillion G. (1983) 5-Hydroxytryptamine Receptors in Brain, in Handbook of Psychopharmacology, Vol. 17 (Iversen L. L., Iversen S. D., and Snyder S. H., eds.) pp. 139–166, Plenum, New York.

    Google Scholar 

  • Fillion G M. B., Rousselle J., Fillion M, Beaudoin D. M, Goiny M R, Deniau J, and Jacob J J (1978) High-affinity binding of [3H]5-Hydroxytryptamine to brain synaptosomal membranes comparison with [3H]lysergic acid diethylamide binding Mol. Pharmacol 14, 50–59

    PubMed  CAS  Google Scholar 

  • Fillion G., Beaudoin D., Rousselle J. C, Deniau J. M., Fillion M P, Dray F, and Jacob J (1979a) Decrease of [3H]5-HT high-affinity binding and 5-HT adenylate cyclase activation after kainic acid lesion in rat brain striatum. J Neurochem 33, 567–570.

    PubMed  CAS  Google Scholar 

  • Fillion G, Rousselle J. C., Beaudoin D, Pradelles P., Goiny M., Dray F, and Jacob, J. (1979b) Serotonin sensitive adenylate cyclase in horse brain synaptosomal membranes. Life Sci. 24, 1813–1822

    PubMed  CAS  Google Scholar 

  • Fillion G, Beaudom D., Rousselle J C., and Jacob J, (1980) [3H]5-HT binding sites and 5-HT-sensitive adenylate cyclase in glial cell membrane fraction. Brain Res. 198, 361–374.

    PubMed  CAS  Google Scholar 

  • Fillion G., Beaudoin D, Flllion M., Rousselle J. C., Robaut C, and Netter Y (1983) 5-Hydroxytryptamine receptors in neurons and glia. J. Neural Transmission, Suppl 18, 307–317.

    CAS  Google Scholar 

  • Forster C. and Whalley E T. (1982) Analysis of the 5-hydroxytryptamine induced contraction of the human basilar arterial strip compared with the rat aortic strip in vitro. Naunyn Schmiedeberg’s Arch. Pharmaco1 319, 12–17

    CAS  Google Scholar 

  • Friedman R L, Barrett R J, and Sanders-Bush E. (1983) Discriminative cue properties of quipazine mediation by serotonin-2 binding sites Soc. Neurosci Abs 9, 335

    Google Scholar 

  • Furchgott R F (1978) Pharmacological characterization of receptors its relation to radioligand-binding studies. Fed Proc. 37, 115–120.

    PubMed  CAS  Google Scholar 

  • Gaddum J. H. and Picarelli Z. P. (1957) Two kinds of tryptamine receptor. Brit J. Pharmacol Chemother 12, 323–328

    CAS  Google Scholar 

  • Geaney D. P., Schachter M., Elliot J. M, and Grahame-Smith D. G (1984) Characterisation of [3H]lysergic acid diethylamide binding to a 5-hydroxytryptamine receptor on human platelet membranes. Eur J Pharmacol 97, 87–93.

    PubMed  CAS  Google Scholar 

  • Glennon R. A, Young R., and Rosecrans J. A. (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur. J. Pharmacol. 91, 189–196.

    PubMed  CAS  Google Scholar 

  • Gothert M. (1980) Serotonin-receptor-mediated modulation of Ca2+-dependent 5-hydroxytryptamine release from neurons of the rat brain cortex. Naunyn-Schmiedeberg’s Arch. Pharmacol 314, 223–230.

    CAS  Google Scholar 

  • Gozlan H., El Mestikawy S., Pichat L, Glowmski J, and Hamon M. (1983) Identification of presynaptic serotonin autoreceptors using a new ligand. 3H-PAT. Nature (Lond.) 305, 140–142.

    CAS  Google Scholar 

  • Haigler H. J and Aghajanian G K (1977) Serotonin receptors in the brain. Fed. Proc 36, 2159–2164.

    PubMed  CAS  Google Scholar 

  • Hall M., El Mestikawy S., Emerit M, Pichat L, Hamon M, Gozlan H (1985) 3H-8-Hydroxy-2-(di-n-propylamino) tetralin binding to pre-and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain J Neurochem 44, 1686–1696.

    Google Scholar 

  • Hamlin K. E. and Fischer F E (1951) The synthesis of 5-hydroxytryptamine. J Am Chem Soc 73, 5007–5008

    CAS  Google Scholar 

  • Hartig P R., Kadan M J, Evans J. J., and Krohn A. M. (1983) 125I-LSD a high-sensitivity ligand for serotonin receptors Eur J Pharmacol 89, 321–322.

    PubMed  CAS  Google Scholar 

  • Humphrey P P. A, Feniuk W., and Watts A. D (1982) Ketanserin—a novel antihypertensive drug? J Pharm Pharmacol. 34, 541.

    PubMed  CAS  Google Scholar 

  • Jacobs B. L. (1976) An animal behavioral model for studying central serotonergic synapses Life Sci 19, 777–786.

    PubMed  CAS  Google Scholar 

  • Kalkman H. O., Batink H. D, ThoolenM. J. M. C, Timmermans P. B M W. M, and Van Zwieten P. A (1983a) Correlation between the affinity for [3H]mianserin-labeled receptors in brain and antagonism of the serotonin pressor response in pithed rats Biochem Pharmacol 32, 2111–2113

    PubMed  CAS  Google Scholar 

  • Kalkman H. O., Boddeke H. W. G. M, Doods H N., Timmermans P. B M W M, and Van Zwieten P A. (1983b) Hypotensive activity of serotonin receptor agonists in rats is related to their affinity for 5-HT1 receptors Eur J Pharmacol. 91, 155–156.

    PubMed  CAS  Google Scholar 

  • Kendall D. A. and Nahorski S R. (1983) Temperature-dependent 5-hydroxytryptamine (5-HT)-sensitive [3H]spiperone binding to rat cortical membranes regulation by guanine nucleotide and antidepressant treatment J Pharmacol Exp Ther 227, 429–434.

    PubMed  CAS  Google Scholar 

  • Kendall D. A and Nahorski S R. (1984) Suppression of 5-HT2 receptor mediated inositol phospholipid breakdown in brain by chronic antidepressant treatment Brit J Pharmacol. 82(suppl), 206P

    Google Scholar 

  • Leysen J E. (1981) Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding studies in vitro. J. Physiol (Paris) 77, 351–362.

    CAS  Google Scholar 

  • Leysen J. E and Tollenaere J. P (1982) Biochemical models for serotonin receptors. Ann. Rev Med Chem 17, 1–10.

    CAS  Google Scholar 

  • Leysen J. E., Niemegeers C. J. E, Tollenaere J P., and Laduron P. M. (1978) Serotonergic component of neuroleptic receptors. Nature (Lond ) 272, 163–166

    Google Scholar 

  • Leysen J. E., Niemegers C J E., Van Nueten J M, and Laduron P M (1982) 3H-Ketanserin (R 41 468), a selective 3H-ligand for receptor binding sites. Mol Pharmacol 21, 301–314.

    PubMed  CAS  Google Scholar 

  • Limbird L. E. (1981) Activation and attenuation of adenylate cyclase. Biochem J 195, 1–13.

    PubMed  CAS  Google Scholar 

  • Lovell R. A and Freedman D. X. (1976) Stereospecific receptor sites for D-lysergic acid diethylamide in rat brain: effects of neurotransmitters, amine antagonists, and other psychotropic drugs. Mol Pharmacol 12, 620–630.

    PubMed  CAS  Google Scholar 

  • Lucki I, Nobler M S., and Frazer A. (1984) Different actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J. Pharmacol Exp. Ther 228, 133–139

    PubMed  CAS  Google Scholar 

  • Maguire M E, Ross E. M, and Gilman A G (1977) β-Adrenergic receptor: ligand binding properties and the interaction with adenylyl cyclase. Adv. Cyclic Nucleotide Res 8, 1–83

    PubMed  CAS  Google Scholar 

  • Maayani S and Stollak J (1983) 5-HT receptors in isolated rabbit aorta Characterization by spiroperidol and other butyrophenones Fed. Proc. 42, 1150

    Google Scholar 

  • Mallat M. and Hamon M (1982) Ca2+-guanine nucleotide interactions in brain membranes. I Modulation of central 5-hydroxytryptamine receptors in the rat. J Neurochem 8, 151–161

    Google Scholar 

  • Marcinkiewicz M., Verge D., Gozlan H., Pichat L., and Hamon M (1984) Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res 291, 159–363.

    PubMed  CAS  Google Scholar 

  • Martin L L. and Sanders-Bush E (1982a) The serotonin autoreceptor. antagonism by quipazine. Neuropharmacol. 21, 445–450.

    CAS  Google Scholar 

  • Martin L L and Sanders-Bush E (1982b) Comparison of the pharmacological characteristics of 5 HT1 and 5 HT2 binding sites with those of serotonin autoreceptors which modulate serotonin release. Naunyn-Schmiedeberg’s Arch. Pharmacol. 321, 165–170.

    CAS  Google Scholar 

  • Middlemiss D N. and Fozard J. R. (1983) 8-hydroxy-2(DI-n-Propyl-amino)-tetralin discriminates between sybtypes of the 5-HT1 recognition site. Eur J. Pharmacol 90, 151–153.

    PubMed  CAS  Google Scholar 

  • Muller-Schweinitzer E (1980) The mechanism of ergometrine-induced coronary arterial spasm In vitro studies on canine arteries J Cardiovas Pharmacol. 2, 645–655.

    CAS  Google Scholar 

  • Nelson D. L, Herbet A, Bourgoin S, Glowinski J., and Hamon M (1978) Characteristics of central 5-HT receptors and their adaptive changes followmg intracerebral 5,7-dihydroxy-tryptamine administration in the rat Mol Pharmacol. 14, 983–995.

    PubMed  CAS  Google Scholar 

  • Nelson D L, Herbet A., Enjalbert A., Bockaert J., and Hamon M. (1980a) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat. I. Biochem. Pharmacol 29, 2445–2453.

    PubMed  CAS  Google Scholar 

  • Nelson D. L, Herbet A., Adrien J., Bockaert J., and Hamon M. (1980b) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sies in the CNS of the rat II Biochem Pharmacol 29, 2455–2463.

    PubMed  CAS  Google Scholar 

  • Norman A. B., Battaglia G, Morrow A L., and Creese I. (1985) [su3H-WB4101 labels S1 serotonin receptors in rat cerebral cortex. Eur J Pharmacol. 106: 461–462

    Google Scholar 

  • Ortmann R., Brschoff S., Radeke E, Buech O., and Delini-Stula A. (1982) Correlations between different measures of antiserotonin activity of drugs. Naunyn-Schmiedeberg’s Arch Pharmacol 321, 265–270.

    CAS  Google Scholar 

  • Palacios J. M., Niehoff D. L., and Kuhar M. J. (1981) [3H]Spiperone binding sites in brain autoradiographic localization of multiple receptors. Brain Res. 213, 277–289.

    PubMed  CAS  Google Scholar 

  • Palacios J. M., Probst A, and Cortes R. (1983) The distribution of serotonin receptors in the human brain. high density of [3H]LSD binding sites in the raphe nuclei of the brainstem Brain Res. 274, 150–155.

    PubMed  CAS  Google Scholar 

  • Pazos A., Engel G., and Palacios J. (1985) Beta-adrenoceptor blocking agents recognize a subpopulation of serotonin receptors in brain. Brain Res 343, 403–408.

    PubMed  CAS  Google Scholar 

  • Pazos A., Hoyer D., and Palacios J. (1985) The binding of serotonergic ligands to the porcine choroid plexus Characterization of a new type of serotorun recognition site. Eur J. Pharmacol. 106, 539–546.

    Google Scholar 

  • Pedigo N W., Yamamura H I, and Nelson D. L. (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain J. Neurochem 36, 220–226.

    PubMed  CAS  Google Scholar 

  • Peroutka S. J. (1984) Vascular serotonin receptors correlation with 5-HT1 and 5-HT2 binding sites. Biochem Pharmacol 33, 2349–2353.

    PubMed  CAS  Google Scholar 

  • Peroutka S. J. (1985) Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain. Brain Res. 344, 167–171.

    PubMed  CAS  Google Scholar 

  • Peroutka S. J. and Kuhar M. J, (1984) Autoradiographic localization of 5-HT1 receptors to human and canine basilar arteries Brain Res. 310, 193–196.

    PubMed  CAS  Google Scholar 

  • Peroutka S J. and Snyder S H (1979) Multiple serotonin receptors Differential binding of 3H-serotonin, 3H-lysergic acid diethylamide, and 3H-spiroperidol Mol Pharmacol 16, 687–699

    PubMed  CAS  Google Scholar 

  • Peroutka S. J. and Snyder S H. (1980a) Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210, 88–90.

    PubMed  CAS  Google Scholar 

  • Peroutka S. J. and Snyder S. H. (1980b) Regulation of serotonin2 (5-HT2) receptors labeled with 3H-spiroperidol by chronic treatment with the antidepressant amitriptyline. J. Pharmacol Exp. Ther 15, 582–587.

    Google Scholar 

  • Peroutka S. J. and Snyder S H. (1981) Two distinct serotonin receptors: Regional variations in receptor binding in mammalian brain. Brain Res. 208, 339–347

    PubMed  CAS  Google Scholar 

  • Peroutka S. J. and Snyder S.H. (1983) Multiple serotonin receptors and their physiological significance Fed Proc 42, 213–217.

    PubMed  CAS  Google Scholar 

  • Peroutka S J., Lebovitz R. M., and Snyder S. H. (1979) Serotonin receptor binding affected differentially by guanine nucleotides. Mol Pharmacol. 16, 700–708

    PubMed  CAS  Google Scholar 

  • Peroutka S J, Lebovitz R. M, and Snyder S H. (1981) Two distinct central serotonin receptors with different physiological functions. Science 212, 827–829.

    PubMed  CAS  Google Scholar 

  • Peroutka S. J,, Noguchi M, Tolner D. J., and Allen G S (1983) Serotonin induced contraction of canine basilar artery. mediation by 5-HT1 receptors. Brain Res. 259, 327–330.

    PubMed  CAS  Google Scholar 

  • Pletscher A and Affolter H (1983) The 5-hydroxytryptamine receptor of blood platelets. J Neural Transmission 57, 233–242.

    CAS  Google Scholar 

  • Quik M, Iversen L. L., Lardner A, and Mackay A V P (1978) Use of ADTN to defme specific 3H-spiperone binding to receptors in brain Nature (Lond ) 274, 513–514.

    CAS  Google Scholar 

  • Rapport M. M., Green A A., and Page I. H (1948) Serum vasoconstrictor (serotonin) IV. Isolation and characterization. J Biol Chem 176, 1243–1251.

    PubMed  CAS  Google Scholar 

  • Roberts M. H T and Straughan D. W (1967) Excitation and depression of cortical neurones by 5-hydroxytryptamine. J Physiol (Lond.) 193, 269–294.

    CAS  Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP regulatory proteins in membrane transduction Nuture (Lond.) 284, 17–21

    CAS  Google Scholar 

  • Rogawski M. A. and Aghajanian G. K. (1981) Serotonin autoreceptors on dorsal raphe neurons. structure-activity relationships of tryptamine analogs J Neurosci 1, 1148–1154

    PubMed  CAS  Google Scholar 

  • Sastry B. S R. and Phlllis J W (1977) Metergoline as a selective 5-hydroxytryptamine antagonist in the cerebral cortex Can J Physiol Pharmacol. 55, 130–133

    PubMed  CAS  Google Scholar 

  • Schmauss C., Hammond D. L., Ochi J. W., and Yaksh T L (1983) Pharmacological antagonism of the antinociceptive effects of serotonin in the rat spinal cord. Eur. J Pharmacol. 90, 349–357.

    PubMed  CAS  Google Scholar 

  • Schnellmann R G., Waters S J, and Nelson D L. (1984) [3H]5-hydroxytryptamine binding sites species and tissue variation J Neurochem 42, 65–70.

    PubMed  CAS  Google Scholar 

  • Schotte A., Maloteaux J. M, and Laduron P M (1983) Characterization and regional distribution of serotonin S2-receptors in human brain Brain Res 276, 231–235

    PubMed  CAS  Google Scholar 

  • Shenker A, Maayani S, Weinstein H, and Green J. P. (1983) Characterization of a serotonin receptor coupled to adenylate cyclase in adult guinea pig hippocampus Soc. Neurosci Abs 9, 1152.

    Google Scholar 

  • Sills M. A., Wolfe B. B., and Frazer A (1984b) Determination of selective and nonselective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther 231, 480–487.

    PubMed  CAS  Google Scholar 

  • Slater P. and Pate1 S. (1983) Autoradiographic distribution of serotonin2 receptors in rat brain Eur J. Pharmacol. 92, 297–298.

    PubMed  CAS  Google Scholar 

  • Snyder S. H (1983) Molecular Aspects of Neurotransmitter Receptors. An Overview, in Handbook of Psychopharmacology, Vol. 17, (Iversen L. L, Iversen S. D., and Snyder S. H., eds.), pp. 1–12, Plenum, New York.

    Google Scholar 

  • Snyder S. H. (1984) Drug and neurotransmitter receptors in the brain. Science 224, 22–31

    PubMed  CAS  Google Scholar 

  • Titeler M., Battaglia G, and Shannon M (1984) Guanine nucleotides modulate cortical S2 serotonin receptors Soc. Neurosci Abs 9, 334

    Google Scholar 

  • Toda N and Fujita Y. (1973) Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine, and transmural electrical stimulation. Circ Res 33, 98–104

    PubMed  CAS  Google Scholar 

  • Twarog B. M. and Page I. H (1953) Serotonin content of some mammalian tissues and urine and a method for its determmation Am J Psychiat. 175, 157–161.

    CAS  Google Scholar 

  • Van Nueten J M, Leysen J. E., Vanhoutte P M., and Janssen P A (1982) Serotonergic responses in vascular and nonvascular tissues. Arch. Int Pharmacodyn 256, 331–334.

    PubMed  Google Scholar 

  • Von Hungen K, Roberts S., and Hill D. F (1974) Developmental and regional variations in neurotransmitter-sensitive adenylate cyclase systems in cell-free preparations from rat brain J Neurochem 22, 811–819

    Google Scholar 

  • Von Hungen K, Roberts S, and Hill D. F (1975) Serotonin-sensitive adenylate cyclase activity in immature rat brain. Brain Res 84, 257–267

    Google Scholar 

  • Wrigglesworth S. J. (1983) Heterogeneity of 5-hydroxytryptamine receptors in the rat uterus and stomach strip Brit.J Pharmacol 80,691–697

    CAS  Google Scholar 

  • Yamamura H. I., Enna S. J., and Kuhar M J, (eds.) (1978) Neurotransmitter Receptor Binding. Raven Press, New York

    Google Scholar 

  • Yap C. Y and Taylor D. A. (1983) Involvement of 5-HT2 receptors in the wet-dog shake behavior induced by 5-hydroxytryptophan in the rat Neuropharmacol 22, 801–804.

    CAS  Google Scholar 

  • Young W. S., III and Kuhar M. J, (1980) Serotonin receptor localization in rat brain by light microscopic autoradiography Eur J Pharmacol 62, 237–239

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Alan A. Boulton Glen B. Baker Pavel D. Hrdina

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Peroutka, S.J. (1986). Serotonin Receptors. In: Boulton, A.A., Baker, G.B., Hrdina, P.D. (eds) Receptor Binding. Neuromethods, vol 4. Humana Press. https://doi.org/10.1385/0-89603-078-4:93

Download citation

  • DOI: https://doi.org/10.1385/0-89603-078-4:93

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-078-7

  • Online ISBN: 978-1-59259-609-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics