Skip to main content

GABA Receptor Binding

  • Protocol
Receptor Binding

Part of the book series: Neuromethods ((NM,volume 4))

Abstract

GABA (γ-aminobutyric acid) receptors are among the most ubiquitous in the brain, having been identified (neurophysiologitally) in all regions and at all levels (e.g., Iversen, 1978). All neuronal cells respond to the iontophoretic application of GABA, usually with a decrease in firing rate associated with hyperpolarization (Curtis, 1979). However, well-known instances of GABA-induced membrane depolarization occur, and the same cells may respond with a local depolarization or hyperpolarization, depending on where the GABA is applied (dendrite vs axon hillock vs cell body, and so on) (Andersen et al., 1980). This electrophysiological evidence indicates that all cells possess GABA receptors (most likely, GABAA receptors, see below), but it does not at all provide evidence for the existence of GABA synapses at these same cells. Indeed, the dorsal root ganglion (rat or cat) possesses GABAA receptors linked to chloride ion channels, activation of which results in membrane depolarization; there is, however, no GABA-ergic input to the dorsal root ganglion. This is therefore an example of an extrasynaptic GABA receptor (Desarmenien et al., 1980; Gallagher et al., 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen P, Dingledine R., Gjerstad L., Langmoen J A., and MosfeIdt Laursen A. M. (1980) Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid. J Physiol (Lond ) 305, 279–296

    CAS  Google Scholar 

  • Barthohni G., Scatton B., Zivkovic B., and Lloyd K. G. (1979) Pharmacological Profile of SL 76002, A New GABAmimetic Drug, in GABA-Neurotransmitters (Krogsgaard-Larsen P., Scheel-Kruger J., and Kofod H., eds.), Munksgaard, Copenhagen

    Google Scholar 

  • Beaumont K., Chilton W. S., Yamamura H. I., and Enna S. J (1978) Muscimol binding in rat brain: Association with synaptic GABA receptors. Brain Res. 148, 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Bowery N. G., Collins J. F., Cryer G., Inch T. D., and McLaughlin N. J. (1979) The GABA Receptor: Stereospecificity and Structure-Activity Studies, in GABA-Biochemistry and CNS Functions (Mandel P. and DeFeudis F. V., eds.), Plenum, New York

    Google Scholar 

  • Bowery N., Hill D. R., and Hudson A. L. (1982) Evidence that SL 75102 is an agonist at GABAB as well as GABAA receptors, Neuropharmacology 21, 391–395.

    Article  PubMed  CAS  Google Scholar 

  • Bowery N., Hill D. R., and Hudson A. L (1983) Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes Brit J Pharmacol. 78, 191–206.

    CAS  Google Scholar 

  • Bowery N. G., Price G W, Hudson A. L., Hill D R., Wilkin G P., and Turnbull M J. (1984) Visualization of different receptor types in the mammalian CNS Neuropharmacology 23-2B, 219–331.

    Article  Google Scholar 

  • Brehm L., Krogsgaard-Larsen P., and Jacobsen P. (1979) GABA Uptake Inhibitors and Structurally Related “Pro-Drugs,” in GABA-Neurotransmitters (Krogsgaard-Larsen P, Scheel-Kruger J, and Kofod H, eds.), Munksgaard, Copenhagen.

    Google Scholar 

  • Collins J. F. and Cryer G (1978) A Study of the GABA Receptor Using [3H]-Blcuculline Methobromide, in Amino Acids as Chemical Transmitters (Fonnum F, ed.), Plenum, New York.

    Google Scholar 

  • Collins J F., McDonald J. A, and Newton R. F (1980) Characterisation of the binding of [3H]-isoguvacine, a γ-ammobutyric acid agonist, to brain synaptosomal membranes. Brain Res. Bull. 5, Suppl. 2, 141–144.

    Article  CAS  Google Scholar 

  • Curtis D. R. (1979) GABAergic Transmission in the Mammalian Central Nervous System, in GABA-Neurotransmitters (Krogsgaard-Larsen P, Scheel-Kruger J., and Kofod H., eds.), Munksgaard, Copenhagen

    Google Scholar 

  • De Feudis F. (1973) Sodium dependency of γ-ammobutyric acid binding to particulate fractions of mouse brain. Exp Neurol 41, 54–62

    Article  Google Scholar 

  • DeFeudis B. (1981) Muscimol binding and GABA receptors. Drug Dev. Res. 1, 93–105.

    Article  Google Scholar 

  • Desarmenien M., Headley P.M., Santangelo F., and Feltz P. (1980) The effects of various GABA-mimetics on dorsal root ganglion neurons in vitro: A physiological analysis. Brain Res Bull 5, Suppl. 2, 471–475

    Article  CAS  Google Scholar 

  • Di Perri B., Calderini G., Battistella A., Raciti R., and Toffano G (1983) Phospholipid methylation increases [3H] diazepam and [3H] GABA binding in membrane preparation of rat cerebellum J.Neurochem 41, 302–308.

    Article  PubMed  Google Scholar 

  • Drew C. A., Johnston G. A R., and Weatherby R. P (1984) Bicuculline-insensitive GABA receptors: Studies on the binding of (-) baclofen to rat cerebellar membranes. Neurosci Lett 52, 317–321.

    Article  PubMed  CAS  Google Scholar 

  • Enna S. J. and Karbon E. W. (1984) GABAB receptors and transmitter-stimulated CAMP accumulation in rat brain Neuropharmacology 23-7B, 821–822

    Article  Google Scholar 

  • Enna S J. and Snyder S. H (1975) Properties of γ-ammobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions Brain Res 100, 81–97

    Article  PubMed  CAS  Google Scholar 

  • Enna S J. and Snyder S H. (1977) Influences of ions, enzymes, and detergents on γ-aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol. Pharmacol. 13, 442–453.

    PubMed  CAS  Google Scholar 

  • Enna S. J., Beaumont K, and Yamamura H. J. (1978) Comparison of [3H]-Muscimol and [3H]-GABA Binding in Rat Brain, in Amino Acids as Chemical Transmitters (Fonnum F., ed.), Plenum, New York.

    Google Scholar 

  • Enna S. J., Ferkany J. W, and Krogsgaard-Larsen P. (1979) Pharmacological Characteristrcs of GABA Receptors in Different Brain Regions, in GABA-Neurotransmitters (Krogsgaard-Larsen P, Scheel-Kruger J., and Kofod H., eds.), Munksgaard, Copenhagen.

    Google Scholar 

  • Falch E. and Krogsgaard-Larsen P. (1982) The binding of the GABA agonist [3H] THIP to rat brain synaptic membranes. J. Neurochem 38, 1123–1129.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher J. P., Nakamura J., and Shinnick-Gallagher P (1983) Effects of glial uptake and desensitization on the activity of γ-ammobutyric acid (GABA) and its analogs at the cat dorsal root ganglion. J. Pharmaco1 Exp. Ther 226, 876–884.

    CAS  Google Scholar 

  • Giambalvo C. T and Rosenberg P. (1976) The effect of phospholipases and proteases on the binding of γ-ammobutyric acid to functional complexes of rat cerebellum. Biochem. Biophys. Acta 436, 741–756.

    Article  PubMed  CAS  Google Scholar 

  • Giotti A., Luzzi S., Spagnesi S., and Zilletti L. (1983) Homotaurme. A GABAs antagonist in the guinea pig ileum. Brit. J Pharmacol. 79, 855–862.

    CAS  Google Scholar 

  • Gottesfeld Z. and Elliott K. A. C. (1971) Factors that affect the binding and uptake of GABA by brain tissue. J. Neurochem. 18, 683–690

    Article  PubMed  CAS  Google Scholar 

  • Greenlee D. V, Van Ness P. C, and Olsen R. W. (1978) Endogenous inhibitor of GABA binding in mammalian brain. Life Sci. 22, 1653–1662.

    Article  PubMed  CAS  Google Scholar 

  • Guidotti A. and Ferrero P. (1985) Ex Vivo Binding of 3H-Muscimol to GABAA Recognition Sites. A Tool to Characterize GABA Receptor Agonists, in Epilepsy and GABA Receptor Agonists (Bartholini G., Bossi L, Lloyd K. G, and Morselli P. L, eds.), Raven, New York.

    Google Scholar 

  • Guidotti A, Toffano G., Grandison L, and Costa E. (1978) Second Messenger Responses and Regulation of High Affinity Receptor Binding to Study Pharmacological Modifications of GABAergic Transmission, in Amino Acids as Chemical Transmitters (Fonnum F., ed.), Plenum, New York.

    Google Scholar 

  • Guidotti A., Corda M. G., Vaccarino F. M., and Wise B C. (1984) Role of GABA-Modulin and of an Endogenous Effect or of Beta-Carboline Binding Sites in the GABA-Benzodiazepine Receptor Interaction, in Actions and Interactions of GABA and Benzodiazepines (Bowery N. G, ed ), Raven, New York.

    Google Scholar 

  • Haefely W., Pieri L., Pole P., and Schaffner R. (1981) General Pharmacology and Neuropharmacology of Benzodiazepine Derivatives, in Handbook of Experimental Pharmacology 55/ll(Hoffmeister F and Stille G, eds ), Springer Verlag, Berlin.

    Google Scholar 

  • Hill D. R. (1985) GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Brit. J Pharmacol. 84, 249–257

    CAS  Google Scholar 

  • Hill D. R. and Bowery N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicuculline—msensitive GABAB sites in rat brain Nature (Lond.) 290, 149–152.

    Article  CAS  Google Scholar 

  • Hill D. R., Bowery N. G., and Hudson A. L. (1984) Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem 42, 652–657.

    Article  PubMed  CAS  Google Scholar 

  • Horng J. S. and Wong D. T (1979) γ-Aminobutyric acid receptors in cerebellar membranes of rat brain after a treatment with Triton-X-100. J. Neurochem. 32, 1379–1386

    Article  PubMed  CAS  Google Scholar 

  • Iversen L. L. (1978) Biochemical Psychopharmacology of GABA, in Psychopharmacology: A Generation of Progress (Lipton M A., Di Mascio A, and Killam K. F, eds ), Raven, New York

    Google Scholar 

  • Iversen L. L, Bird E., Spokes E., Nicholson S. H, and Suckling C J. (1979) Agonist Specificity of GABA Binding Sites in Human Brain and GABA in Huntington’s Disease and Schizophrenia, in GABA Neurotransmitters (Krogsgaard-Larsen P, Scheel-Kruger J., and Kofod H., eds.), Munksgaard, Copenhagen.

    Google Scholar 

  • Johnston G. A. R (1976) Physiologic Pharmacology of GABA and Its Antagonists in the Vertebrate Nervous System, in GABA in Nervous System Function (Roberts E, Chase T. N., and Tower D B., eds.), Raven, New York.

    Google Scholar 

  • Johnston G. A. R and Allan R. D (1984) GABA agonists. Neuropharmacology 23-7B, 831–832.

    Article  Google Scholar 

  • Johnston G. A R. and Kennedy S. M. (1978) GABA Receptors and Phospholipids, in Amino Acids as Chemical Transmitters (Fonnum F., ed.), Plenum, New York.

    Google Scholar 

  • Johnston G A. R. and Skerritt J H. (1984) GABArins and the Nexus Between GABA and Benzodiazepine Receptors, in Actions and Interactions of GABA and Benzodiazepines (Bowery N. G., ed.), Raven, New York.

    Google Scholar 

  • Johnston G. A. R., Allan R. D., Kennedy S. M., and Twitchin B. (1979) Systematic Study of GABA Analogues of Restricted Conformation, in GABA-Neurotransmitters (Krogsgaard-Larsen P, Scheel-Kruger J, and Kofod H, eds.), Munksgaard, Copenhagen.

    Google Scholar 

  • Karbon E. W., Duman R. S, and Enna S. J (1984) GABAB receptors and norepinephrine-stimulated CAMP production in rat brain cortex Brain Res. 306, 327–332.

    Article  PubMed  CAS  Google Scholar 

  • Kato K., Goto M., and Fukuda H (1983) Regulation by divalent cations of 3H-baclofen binding to GABAB sites in rat cerebellar membranes Life Sci 32, 879–887

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P and Arnt J (1980) Pharmacological studies of interactions between benzodiazepines and GABA receptors Brain Res. Bull 5, Suppl. 2, 867–872.

    Article  CAS  Google Scholar 

  • Krogsgaard-Larsen P., Johnston G A. R., Curtis D R., Game C. J. A., and McCulloch R. M. (1975) Structure and biological activity of a series of conformationally restricted analogues of GABA. J Neurochem. 25, 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P, Honore T, and Thyssen K. (1979) GABA Receptor Agonists: Design and Structure-activity Studies, In GABA-Neurotransmitters (Krogsgaard-Larsen P., Scheel-Kruger J, and Kofod H., eds.), Munksgaard, Copenhagen.

    Google Scholar 

  • Krogsgaard-Larsen P., Snowman A., Leemis S. C., and Olsen R. W. (1981) Characterization of the binding of the GABA agonist [3H]-piperidine-4-sulphonic acid to bovine brain synaptic membranes J. Neurochem. 37, 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen P., Falch E., Peet M J., Leach J. D., and Curtis D R, (1983) Molecular Pharmacology of the GABA Receptors and GABA Agonists, in CNS Receptors—From Molecular Pharmacology to Behaviour (Mandel P and De Feudis F V., eds.), Raven, New York.

    Google Scholar 

  • Krogsgaard-Larsen P, Falch E., and Jacobsen P. (1984) GABA Agonists. Structural Requirements for Interaction With the GABA-Benzodiazepine Receptor Complex, in Actions and Interactions of GABA and Benzodiazepines (Bowery N G, ed ), Raven, New York

    Google Scholar 

  • Leach M. J and Wilson J. A. (1978) GABA receptor binding with [3H]-muscimol in calf cerebellum. Eur J, Pharmacol 48, 329–330.

    Article  CAS  Google Scholar 

  • Lester B. R and Peck E. J. (1979) Kinetic and pharmacologic characterization of gamma-ammobutyric acid receptive sites from mammalian brain. Brain Res. 161, 79–97

    Article  PubMed  CAS  Google Scholar 

  • Lloyd K. G. and Beaumont K. (1980) Possible role of phospholipids in GABA receptor function in human and rat brain. Brain Res. Bull. 5, Suppl. 2, 285–290

    Article  CAS  Google Scholar 

  • Lloyd K. G. and Davidson L (1979) 3H-GABA binding in brains from Huntington’s chorea patients: Altered regulation by phospholipids? Science 205, 1147–1149.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd K. G. and Dreksler S. (1979) An analysis of 3H-gamma-aminobutyric acid (GABA) binding in the human brain. Brain Res 163, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd K. G., Dreksler S., and Bird E. (1977a) Alterations in 3H-GABA binding in Huntington’s chorea. Life Sci. 21, 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd K. G., Shemen L., and Hornykiewicz O. (1977b) Distribution of high affinity sodium-independent (3H)gamma-aminobutyric acid [3(H)-GABA] binding in the human brain: Alterations in Parkmson’s disease. Brain Res 127, 269–278.

    Article  CAS  Google Scholar 

  • Lloyd K. G., Arbilla S., Beaumont K., Briley M., de Montis G., Scatton B., Langer S. Z., and Bartholini G. (1982) γ-Aminobutyric acid (GABA) receptor stimulation II. Specificity of progablde (SL 76002) and SL 75102 for the GABA receptor. J. Pharmacol. Exp. Ther. 220, 672–677.

    PubMed  CAS  Google Scholar 

  • Lloyd K. G, Munari C., Worms P, Bossi L., and Morselli P. L. (1983) Indications for the Use of Gamma-Aminobutyric Acid (GABA) Agorusts in Convulsant Disorders, in Epilepsy: An Update on Research and Therapy (Nistico G., Di Perri R., and Meinardi H., eds.), Alan Liss, New York.

    Google Scholar 

  • Luzzi S., Maggi C. A., Spagnesi S., Santicoli P., and Zilletti L. (1985) 5-Aminovaleric acid interactions with GABAA and GABAB receptors in guinea pig ileum. J. Auton. Pharmacol. 5, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Madtes P. (1984) Chloride ions preferentially mask high-affinity GABA binding sites. J Neurochem. 43, 1434–1437.

    Article  PubMed  CAS  Google Scholar 

  • Mao C. C, Guidotti A., and Costa E. (1975) Interactions between γ-ammobutyric acid and guanosine cyclic 3′,5′-monophosphate in rat cerebellum. Mol Pharmacol. 10, 736–745.

    Google Scholar 

  • Maurer R. (1979) [3H]-Muscimol Bmdmg to Rat Cerebellar Membranes, in GABA-Biochemistry and CNS Functions (Mandel P. and De Feudls F. V, eds.), Plenum, New York.

    Google Scholar 

  • Mohler H. (1979) GABA Receptor Binding With [3H]-GABA and [3H]-(+)-Bicuculline Methiodide. An Improved Method, in GABA-Biochemistry and CNS Functions (Mandel P. and De Feudis F. V, eds.), Plenum, New York.

    Google Scholar 

  • Mohler H and Okada T. (1978) GABA Receptor in Rat Brain: Demonstration of an Antagonist Binding Site, in Amino Acids as Chemical Transmitters (Fonnum F., ed ), Plenum, New York.

    Google Scholar 

  • Mohler H., Richards J G., and Wu J. Y. (1981) Autoradiographic localization of benzodiazepine receptors in immunocytochemically identified γ-ammobutyrergic synapses Proc Natl Acad. Sci. USA 78, 1935–1938.

    Article  PubMed  CAS  Google Scholar 

  • Morin A. M. and Wasterlain C. G (1980) The binding of 3H-isoguvacine to mouse brain synaptic membranes. Life Sci. 26, 1239–1245.

    Article  PubMed  CAS  Google Scholar 

  • Muhyaddin M., Roberts P. J., and Woodruff G N. (1982) Presynaptic GABA receptors in the rat anococygelus muscle and their antagonism by 5-aminovaleric acid. Brit J. Pharmacol. 77, 163–168

    CAS  Google Scholar 

  • Olsen R. W. and Snowman A. M. (1982) Chloride-dependent enhancement by barbiturates of γ-aminobutyric acid receptor binding. J Neurosci 2, 1812–1823.

    PubMed  CAS  Google Scholar 

  • Olsen R. W. and Snowman A. M. (1983) [3H]-Bicuculline methochloride binding to low-affinity γ-ammobutyric acid receptor sites J. Neurochem 41, 1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Olsen R. W., Ticku M. K., Van Ness P C., and Greenlee D. (1978) Effects of drugs on γ-ammobutyric acid receptors, uptake, release and synthesis. Brain. Res 139, 277–294

    Article  PubMed  CAS  Google Scholar 

  • Olsen R W, Ticku M K, Greenlee D., and Van Ness P. (1979) GABA Receptor and Ionophore Binding Sites: Interaction With Various Drugs, in GABA-Neurotransmitters (Krogsgaard-Larsen P., Scheel-Kruger S., and Kofod H., eds.), Munksgaard, Copenhagen.

    Google Scholar 

  • Pilc A. and Lloyd K. G. (1984) Chronic antidepressants and GABA “B” receptors, A GABA hypothesis of antidepressant drug action Life Sci. 35, 2149–2154

    Article  PubMed  CAS  Google Scholar 

  • Rago L. K. and Zarkovsky A. M. (1983) Bicuculline-insensitive effects of baclofen. Naunyn Schmiedeberg’s Arch. Pharmacol. 322, 166–169.

    Article  CAS  Google Scholar 

  • Sano K. and Roberts E. (1963) Binding of γ-ammobutyric acid by brain preparations. Biochem. Pharmacol. 12, 489–502.

    Article  PubMed  CAS  Google Scholar 

  • Snodgrass S. R. (1978) Use of 3H-muscimol for GABA receptor studies. Nature (Lond.) 273, 392–394.

    Article  CAS  Google Scholar 

  • Svenneby G. and Roberts E. (1973) Bicuculline and N-methyl-bicuculline—competitive inhibitors of brain acetylcholinesterase J. Neurochem. 21, 1025–1026.

    Article  PubMed  CAS  Google Scholar 

  • Toffano G. (1983) Endogenous Modulators of the GABA Receptor, in The GABA Receptors (Enna S. J., ed.), Humana, Clifton, New Jersey.

    Google Scholar 

  • Toffano G., Guidotti A., and Costa E. (1978) Punfication of endogenous protein inhibitor of the high affinity binding of aminobutyric acid to synaptic membranes of rat brain. Proc. Natl Acad Sci. USA 75, 4024–4028.

    Article  PubMed  CAS  Google Scholar 

  • Van Ness P. C and Olsen R. W (1979) Gamma-aminobutyric acid receptor binding in human brain regions. J. Neurochem 33, 593–596.

    Article  PubMed  Google Scholar 

  • Wang Y J, Salvaterra P, and Roberts E (1979) Characterization of [3H] muscimol binding to mouse brain membranes. Biochem. Pharmacol. 28, 1123–1128

    Article  PubMed  CAS  Google Scholar 

  • White W. F. and Snodgrass S. R. (1983) Isoguvacine binding, uptake and release: Relation to the GABA system J. Neurochem 40, 1701–1708.

    Article  PubMed  CAS  Google Scholar 

  • Williams M. and Risley E. A. (1979) Characterization of the binding of [3H] muscimol, a potent γ-ammobutyric acid agonist, to rat brain synaptosonal membranes using a filtration assay. J Neurochem. 32, 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik W J. and Neff N. H. (1984) Aminobutyric acid β receptors are negatively coupled to adenylate cyclase in brain and in the cerebellum: These receptors may be associated with granule cells Mol. Pharmacol. 25, 24–28.

    PubMed  CAS  Google Scholar 

  • Wong D. T and Horng J. S. (1977) Na+-independent binding of GABA to the Triton-X-100-treated synaptic membranes from cerebellum of rat brain. Life Sci. 20, 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Worms P, Depoortere H., Durand A., Morselli P. L, Lloyd K. G., and Bartholini G. (1982) γ-Aminobutyric acid (GABA) receptor stimulation. I Neuropharmacological profiles of progabide (SL 76002) and SL 75102, with emphasis on their anticonvulsant spectra J Pharmacol. Exp. Ther 220, 660–671.

    PubMed  CAS  Google Scholar 

  • Zukin S. R, Young A. B., and Snyder S. H. (1974) Gamma aminobutyric acid binding to receptor sites in the rat central nervous system Proc Natl. Acad. Sci. USA 71, 4802–4807.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Pavel D. Hrdina

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Lloyd, K.G. (1986). GABA Receptor Binding. In: Boulton, A.A., Baker, G.B., Hrdina, P.D. (eds) Receptor Binding. Neuromethods, vol 4. Humana Press. https://doi.org/10.1385/0-89603-078-4:217

Download citation

  • DOI: https://doi.org/10.1385/0-89603-078-4:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-078-7

  • Online ISBN: 978-1-59259-609-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics