Skip to main content

Neurotransimitter-Selective Brain Lesions

  • Protocol

Part of the book series: Neuromethods ((NM,volume 1))

Abstract

Abstract As neuroanatomical discoveries in the brain are made, there follows an intense curiosity about function. Frequently, the two initial questions asked are. What happens if the tissue is removed, and what happens if it is activated? Perhaps the first to use an experimental ablation method in animals to study brain function was DuVerney in 1697 (according to Walker, 1957). However, it was not until Flourens published his influential book in 1824, and its revision in 1842, that the method became accepted widely enough to displace cranioscopy popularized by the phrenologists (Luciani, 1915). Flourens presented the ablation method in great detail and his descriptions of the behavioral effects of the brain damage were far more complete than those of many of today’s investigators. Although many of his conclusions regarding localization of function were soon vigorously challenged, particularly by clinicians, he stimulated a great deal of interest in brain-behavior relationships (Kolb and Whishaw, 1980; Young, 1970). (1870) and (1873) combined the ablation method with electrical stimulation techniques to study the motor functions of the cerebral cortex. When selective cortical areas were removed surgically, specific motor pareses were obtained that matched the topographic maps defined by the stimulation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Adams R. N and Marsden C A (1982) Electrochemical Detection Methods for Monoamine Measurements in Vitro and In vivo, in Handbook of Psychopharmacology, vol. 15 (Iversen L L., Iversen S. D, and Snyder S. H, eds ), pp 1–74, Plenum Press, New York.

    Chapter  Google Scholar 

  • Agid Y., Javoy F., and Glowmski J. (1973a) Hyperactivity of remaining dopaminergic neurons after partial destruction of the mgrostnatal dopaminergic system in the rat Nature New Brol 245, 150–151.

    Google Scholar 

  • Agid Y., Javoy F., Glowinski J, Bouvet D., and Sotelo C. (1973b) Injection of 6-hydroxydopamine m the substantia nigra of the rat. II Diffusion and specificity. Brain Res 58, 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Ahlskog J E and Hoebel B G (1973) Overeating and obesity from damage to a noradrenergic system in the brain Science 182, 166–169.

    Article  CAS  PubMed  Google Scholar 

  • Allis B. and Cohen G. (1977) The neurotoxlcity of 5,7-dihydroxytrypta-mine in the mouse striatum: protection by 1-phenyl-3-(2-thio-azolyl)-2-thiourea and by ethanol Eur. J. Pharmacol. 43, 269–272

    Article  CAS  PubMed  Google Scholar 

  • Alpers B. J and Lewy F H. (1940) Changes m the nervous system following carbon disulfide poisonmg in animals and in man. Arch Neurol Psychzat. 44, 725–739.

    Article  CAS  Google Scholar 

  • Alta, C A., O/Neil S., and Marshall J F. (1984) Sensorimotor impairment and elevated levels of dopamme metabolites in the neo-striatum occur rapidly after mtranigral mlection of 6-hydroxy-dopamme or gamma-hydroxybutyrate m awake rats Neuropharm-acology 23, 309–318

    Article  Google Scholar 

  • Anand B K and Brobeck J R (1951) Hypothalamic control of food mtake in rats and cats Yule J. Brol. Med. 24, 123–140.

    CAS  Google Scholar 

  • Ansell G B (1981) The Turnover of Acetylcholine, in Central Transmitter Turnover (C J, Pycock and P. V. Taberner, eds.) pp. 81–104, University Park Press, Baltimore.

    Chapter  Google Scholar 

  • Asante J, W., Cross A. J., Deakin J. F.W, Johnson J. A, and Slater H. R (1983) Evaluation of ethylcholme mustard aziridmium ion (ECMA) as a specific neurotoxm of brain cholmergic neurones. Brat J Pharmacol. 80, 573P

    Article  Google Scholar 

  • Baglioni S. and Magnini M. (1909) Archivio di Fisologia, in Luciani L. Human Physiology (Holmes G M, ed), 1915, McMillan, London

    Google Scholar 

  • Balagura S., Wilcox R H., and Coscma D V (1969) The effect of diencephalic lesions on food intake and motor activity Physlol Behau 4, 629–633.

    Article  Google Scholar 

  • Bannon M J, Bunney E. B, Zigun J. R, Sklrboll L R, and Roth R H (1980) Presynaptic dopamme receptors msensmvity to kamlc acid and the development of supersensitivity following chronic haloperidol. Naunyn-Schmiedeberg’s Arch. Pharmacol. 312, 161–165.

    Article  CAS  Google Scholar 

  • Barbaccia M. L, Gandolfi O, Chuang D M, and Costa E (1983) Modulation of neuronal serotonin uptake by a putative endogenous li-gand of imlpramme recognition sites Proc Nat1 Acad Sci USA 80, 5134–5138

    Article  CAS  Google Scholar 

  • Barth T., Lmdner M D, and Schallert T (1983) Sensorimotor asymmetries and tactile extmction in unilateral frontal cortex damaged and striatal dopamme-depleted rats Soc Neurosci Abst 9, 482

    Google Scholar 

  • Baumgarten H. G., Blorklund A, Nobm A, Rosengren E., and Schlossberger H G. (1975) Neurotoxiclty of hydroxylated tryptamines. structure-activity relationships Acta Physiol Stand Suppl 429, 7–27

    Google Scholar 

  • Baumgarten H G., Lachenmayer L, and Blorklund A (1977) in Methods in Psychobiology, vol 3 (Myers, R D, ed ) pp 47–98, Academic Press, New York.

    Google Scholar 

  • Baumgarten, H G and Lachenmayer L (1972) 5,7-Dihydroxytrypta-mine* Improvement in chemical lesionmg of mdoleamme neurons in mammalian brain Z Zellforsch Mikrosk 135, 399–414

    Article  CAS  Google Scholar 

  • Bennett G. W, Marsden C. A, Sharp T., and Stolz J F (1981) Concomitant Determmation of Endogenous Release of Dopamme, Noradrenalme, 5-Hydroxytryptamine, and Thyrotropm-Releasing Hormone (TRH) From Rat Brain Slices and Synaptosomes, in Cen pp 57–90, Raven Press, New York

    Google Scholar 

  • Blorklund A., Baumgarten H G, and Rensch A. (1975) 5,7-Dihydroxy-tryptamme. improvement of its selectivity for serotonin m the CNS by pretreatment with desipramme. J Neurochem 24, 833–835

    Article  Google Scholar 

  • Blank C L, Kissinger P T, and Adams R N (1972) 5,6-Dihydroxym-dole formation from oxidized 6-hydroxydopamme. Eur J Pharmacol 19, 391–394

    Article  CAS  PubMed  Google Scholar 

  • Bosland M C, Versteeg D H. G., van Put J, and Jong W de (1981) Effect of depletion of spmal noradrenalme by 6-hydroxydopamme on the development of renal hypertension m rats Clin Exper Pharmacol. Physml. 8, 67–77.

    Article  CAS  Google Scholar 

  • Braestrup C (1977) Changes m drug-induced stereotyped behavior after 6-OHDA lesions m noradrenalme neurons. Psycopharmacology 51, 199–204

    Article  CAS  Google Scholar 

  • Brecher G and Waxler S. H. (1949) Obesity in mice due to single injections of goldthioglucose Proc Soc Exptl Biol Med 70, 498–501

    CAS  Google Scholar 

  • Breese G R and Cooper B R (1975) Behavioral and biochemical interactions of 5,7-dihydroxytryptamine with various drugs when administered intracrsternally to adult and developing rats Brain Res. 98, 517–527

    Article  CAS  PubMed  Google Scholar 

  • Breese G. R and Mueller R. A (1978) Alterations m the neuro-cytotoxiclty of 5,7-dihydroxytryptamine by pharmacologic agents in adult and developing rats Ann. NY Acad. Sci 305, 160–174

    Article  CAS  PubMed  Google Scholar 

  • Breese G. R and Traylor T. D. (1971) Depletion of brain noradrenalme and dopamme by 6-hydroxydopamme. Brit J Pharmacol. 42, 88–99

    Article  CAS  Google Scholar 

  • Brooks V B. (1983) Study of brain function by local, reversible cooling Rev Physiol. Biochem. Pharmacol. 95, 1–109.

    Article  Google Scholar 

  • Brown M, Hohmann C F., Lowenstem P R, Meek W., Wenk G L, and Coyle J. T (1985) Age-related reappearance of partial forebrain cholmergic deficits. Soc Neurosci Abst 11.

    Google Scholar 

  • Burns R. S, Markey S. P., Phillips J. M., and Chmeh C. C. (1984) The neurotoxicity of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine m the monkey and man. Can 1, Neural. Sci. 11, 166–168.

    CAS  Google Scholar 

  • Burns R. S, Chmeh C. C., Markey S, Ebert M. M., Jacobowitz D, and Kopm I. J (1983) A primate model of Parkinson’s disease. selective destruction of substantia mgra, pars compacta dopammergic neurons by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Proc Nati Acad Sci USA, 80, 4546–4550

    Article  CAS  Google Scholar 

  • Burt D R. (1980) Basic Receptor Methods II Problems of Interpretation in Bmdmg Studies, in Receptor Bmdmg Technzques. Society for Neuroscience 1980 Short Course Syllabus pp 53–69, Society for Neuroscience, Bethesda

    Google Scholar 

  • Butcher L L., Eastgate, S M, and Hodge G. K. (1974) Evidence that punctate mtracerebral admmistration of 6-hydroxydopamme fails to produce selective neuronal degeneration Naunyn-Schmiedeberg’s Arch Pharmacol. 285, 31–70

    Article  CAS  Google Scholar 

  • Carey R J. (1982) Unilateral 6-hydroxydopamme lesions of dopamme neurons produce bilateral self-stimulation deficits. Behav. Brain Res 6, 101–114

    Article  CAS  PubMed  Google Scholar 

  • Carpenter M B. and Whittier J R. (1952) Study of methods for producing experimental lesions of the central nervous system with special reference to stereotaxic technique. J Comp Neural. 97, 73–131.

    Article  CAS  Google Scholar 

  • Caudill W., Papach L. A. and Wlghtman R. M. L. (1982) Measurement of brain GABA with LCEC Current Separations 4, 59–61.

    Google Scholar 

  • Chiueh C C., Markey S. P, Burns R S, Johannessen J, Jacobowitz D. M., and Kopm I. J. (1983) N-methyl-4-phenyl-1,2,3,6-tetrahydrop yridme, a parkmsoman syndrome-causing agent in man and monkey, produces different effects in guinea pig and rat. Pharmacologist 25, 131.

    Google Scholar 

  • Chmeh C. C., Markey S P, Burns R. S., Johannessen J N, Pert A., and Kopm I. J. (1984) Neurochemical and behavioral effects of systemic and mtramgral administration of N-methyl-4-phenyl-1,2,3,6-tetrahyd ropyridine m the rat. Eur. J Pharmacol. 100, 189–194.

    Article  Google Scholar 

  • Clement J G. and Colhoun E. G (1975) Presynaptic effect of the azuidmmm ion of acetylcholme mustard (methyl-2-acetoxyethyl-2-choloroethylamine) on the phremc nerve rat diaphragm preparation, Can J Physiol. Pharmacol 53, 264–272.

    Article  CAS  PubMed  Google Scholar 

  • Clewans C S. and Azmitia E (1984) Tryptophan hydroxylase in hlppocampus and midbrain following mulateral mlection of 5,7-dihydrox-ytryptamme. Brain Res. 307, 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Cohen G. and Heikkila R E. (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxy radical by 6-hydroxydopamme, dialuric acid, and related cytotoxic agents J Biol Chem 249, 2447–2452

    CAS  PubMed  Google Scholar 

  • Cooper D. O. and Schmidt D. E. (1980) The use of cholme acetyl-transferase as a cholinergic marker in the determmation of high-affuuty choline uptake J Neurochem. 34, 1553–1556.

    Article  CAS  PubMed  Google Scholar 

  • Cooper J. R., Bloom F E., and Roth R. H. (1982a) Catecholamines I. General Aspects, The Biochemzcal Basis of Neuropharmacology, 4th edn (Cooper J. R, Bloom F E, and Roth R. H, eds ) pp. 1099172, Oxford University Press, New York

    Google Scholar 

  • Cooper J. R, Bloom F E, and Roth R H (1982b) Catecholamines II CNS Aspects, in The Biochemical Basis of Neuropharmacology, 4th edn (Cooper J R, Bloom F E, and Roth R. H, eds) pp 173–222, Oxford University Press, New York

    Google Scholar 

  • Cooper J R., Bloom F. E, and Roth R H. (1982c) Serotonin (5-Hydroxy-tryptamine), in The Blochemtcal Basts of Neuropharmacology, 4th edn. (Cooper J R, Bloom F E., and Roth R. H., eds. pp. 223–248, Oxford University Press, New York

    Google Scholar 

  • Coyle J. T. (1983a) Neurotoxic action of kamlc acid (review). J Neuro chem. 41, 1–11.

    CAS  Google Scholar 

  • Coyle J T. (1979). An animal model for Huntmgton’s disease. Biol. Psychiat. 14, 251–276

    CAS  PubMed  Google Scholar 

  • Coyle J. T, Ferkany J. W., and Zaczek R (1983b) Kamlc acid insights from a neurotoxm into the pathophysiology of Huntmgton’s disease. Neurobehav Taxicol Teratol. 5, 617–624.

    CAS  Google Scholar 

  • Coyle J. T. and Schwartz R. (1976) Lesion of striatal neurones with kamic acid provides a model for Huntington’s chorea Nature (London) 263, 244–246

    Article  CAS  PubMed  Google Scholar 

  • Creese I., Sibley D R., Hamblm M W., and Leff S. E (1983) The classification of dopamine receptors. relationship to radiohgand binding. Ann. Rev Neurosci 6, 43–71

    Article  CAS  PubMed  Google Scholar 

  • Creese I (1981) Dopamme Receptors, in Neurotransmitter Receptors, Part 2. Biogenic Amines (Yamamura H. I. and Enna S. J., eds). pp. 129–184, Chapman and Hall, London.

    Chapter  Google Scholar 

  • Creese I., Hamblm M. W., Leff S. E., and Sibley D R. (1982) CNS Dopamme Receptors, in Handbook of Psychopharmacology, vol 17, (Iversen L. L., Iversen S. D, and Snyder S. H., eds.). pp. 81–138 Plenum Press, New York.

    Google Scholar 

  • Creese I and Snyder S. H (1979) Nigrostriatal lesions enhance striatal [3H]apomorphme and [ H]spuoperidol bmdmg. Eur J. Pharmacol 56, 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Creveling C R and Rotman A. (1978) Mechanism of action of dihydrox-ytryptammes. Ann. NY Acad. Sci 305, 57–73

    Article  CAS  PubMed  Google Scholar 

  • Curzon.G (1981) The Turnover of 5-Hydroxytryptamine, in Central Trunsmitter Turnover. (Pycock C. J. and Taberner P. V. eds.). pp.20–58, Uruversity Park Press, New York.

    Google Scholar 

  • Dahlstrom A. and Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines m the cell bodies of brain stem neurons Acta Phystol Sci. Suppl. 232,62, 1–55

    Google Scholar 

  • Daly J., Fuxe K., and Jonsson G (1974) 5,7-Dlhydroxytryptamine as a tool for the morphological and functional analysis of central 5-hydroxytryptamine neurons. Res. Commun. Chem. Pathol. Pharmacol 1, 175–187.

    Google Scholar 

  • Davies P and Maloney A. J. F (1976) Selective loss of central cholmergrc neurons in Alzheimer’s disease. Lancet 11, 1403

    Article  Google Scholar 

  • Davis G. C., Koch D. D, Kissinger P. T., Brunlett C. S., and Shoup R. E. (1981) Determmation of Tyrosine and Tryptophan Metabolitesim Body Fluids Using Electrochemical Detection, in Liquid Chromatography in Clinical Analysis. (Kabra P. M. and Morton L. J., eds.). pp. 253–306, Humana Press, Clifton, New Jers

    Chapter  Google Scholar 

  • Davis G. C., Williams, A. C., Markey S. P., Ebert M. H., Came E. D., Reichert C M, and Kopm I. J (1979) Chronic parkmsomsm secondary to intravenous inlection of mependme analogues. Psychiat Res 1, 249–254

    Article  CAS  Google Scholar 

  • de Montigny C. D., Wang R. Y., Reader T. A., and Aghalaman G. K (1980) Monoaminergic denervation of the rat hippocampus Microiontophoretrc studies on pre-and postsynaptic supersensmvity to norepmephrme and serotonin. Brain Res. 200, 363–376.

    Article  PubMed  Google Scholar 

  • Diggory G. L., Drckison S E, Wood M. D., and Wylhe M. G. (1981) Changes in Central 5-Hydroxytryptamine Turnover Induced by Acute and Chronic Inhrbition of the Reuptake Process, in Central Transmitter Turnover. (Pycock C. J. and Taberner P. V., eds.). pp 149–154, University Park Press, Baltimore.

    Chapter  Google Scholar 

  • Dooley D. J, Hunziker G., and Hausler A. (1984) Cortrcosterone secretion in the rat after DSP-4 treatment. Neurosci. Lett. 46, 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Edwards D J. and Bagg H. J. (1923) Lesions of the corpus striatum by radium emanation and the accompanymg structural and functional changes. Am J Physiol. 65, 162–173.

    Google Scholar 

  • Ehlert F. J., Roeske W. R., and Yamamura H. I. (1983) The Nature of Muscarmic Receptor Bmdmg, in Handbook of Psychopharmacology, vol. 17, (Iversen L. L., Iversen S. D., and Snyder S. H,, eds.) pp. 241–284, Plenum Press, New York

    Google Scholar 

  • Enna S. J. (1983) Radioreceptor Assays for Neurotransmitters and Drugs, in Handbook of Psychopharmacology, vol. 15, (Iversen L. L., Iversen S. D., and Snyder S. H., eds.). pp. 75–94, Plenum Press, New York

    Google Scholar 

  • Enna S. J. (1980) Basic Receptor Methods I, in Receptor Binding Techniques. Society for Neuroscience 1980 Short Course Syllabus. pp 33–52, Society for Neuroscience0, Bethesda.

    Google Scholar 

  • Ferrier D. (1873) Experimental researches in cerebral physiology and pathology West Riding Lunatzc Asylum MedIcal Reports 3, 30–96

    Google Scholar 

  • Fillion G, (1983) 5-Hydroxytryptamine Receptors in Brain, in Handbook of Psychopharmacology, vol 17, (Iversen, L. L., Iversen S. D., and Snyder S H, eds) pp 139–166, Plenum Press, New York

    Google Scholar 

  • Finger S and Stem D. G. (1982) Brain Damage and Recovery Research and Clinical Perspectives Academic Press, New York.

    Google Scholar 

  • Fnik J. S. and Smith G P (1979) Decreased locomotor and mvestigatory exploration after denervation of catecholammergic terminal fields in the forebrain of rats. J Camp. Physiol Psychol 93, 34–65.

    Article  Google Scholar 

  • Fisher A. and Hanm I (1980) Cholme analogs as potential tools in developing selective animal models of central cholmergic hypofunction Life Sci 27, 1615–1634

    Article  CAS  PubMed  Google Scholar 

  • Fisher A, Mantione C. R., Abraham D. J., and Hanm I. (1980) Ethylcholme mustard azmdimum (AF64A) A potential irreversible cholmergic neurotoxm in vivo Fed Proc 34, 411

    Google Scholar 

  • Fisher A., Mantione C. R., Beth H., and Hanm I. (1981) Atropme potenhates AF64A-induced pharmacological effects in mice m vivo Fed Proc. 40, 269.

    Google Scholar 

  • Fonnum F. (1981) The Turnover of Transmitter Ammo Acids, With Special Reference to GABA, in Central Trunsmitter Turnover (Pycock C J. and Taberner P. V., eds) pp 105–124, University Park Press, Baltimore

    Chapter  Google Scholar 

  • Fuller R. W. (1984) Serotonin Receptors, in Monographs in Neural Sciences, vol 10 (Cohen M. M., ed.). pp. 158–181

    Google Scholar 

  • Fritsch G. and Hitzig E. (1870) On the Electrical Excitablllty of the Cerebrum, in The Cerebral Cortex (von Bonm C., ed.). p. 1960, Charles C Thomas, Springfield, IL

    Google Scholar 

  • Furness J. B., Campbell G. R., Gillard S. M., Malmfors T., Cobb J. L. S., and Burnstock G (1970) Cellular studies of sympathetic denervation produced by 6-hydroxydopamme in the vas deferens. J Pharmacol Exp Ther 174, 111–123.

    CAS  Google Scholar 

  • Fuxe K., Roberts P. and Schwartz R (1984) Excitotoxins MacMillan Press, London.

    Google Scholar 

  • Gladfelter W. E and Brobeck J. R. (1962) Decreased spontaneous locomotor activity in the rat induced by hypothalamic lesions Am J Physiol. 203, 811–817.

    CAS  PubMed  Google Scholar 

  • Glick S. D. (1976) Behavioral Effects of Amphetamine m Brain-Damaged Animals* Problems in the Search for Sites of Action, in Cocaine and Other Stizmulants (Ellmwood, E., ed) pp 77–96. Plenum Press, New York.

    Google Scholar 

  • Goldman M. E. and Erickson C. K. (1983) Effects of acute and chronic admmlstration of antidepressant drugs on the central cholmergic nervous system Neuropharmacology 22, 1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Goldman M. E. and Erickson C. K. (1982) Atropine-amitriptyline interactions in the rat central cholmergic nervous system Brain Res. 248, 188–191

    Article  CAS  PubMed  Google Scholar 

  • Grossman S. P. (1960) Eating or drinking elicited by direct adrenergic or cholmergic stimulation of hypothalamus Science 132, 301–302

    Article  CAS  PubMed  Google Scholar 

  • Grossman S. P., Dacey D., Halaris A. E., Collier T, and Routtenberg A. (1978) Aphagia and adipsla after preferential destruction of nerve cell bodies in hypothalamus Science 202, 537–539

    Article  CAS  PubMed  Google Scholar 

  • Guldin W. O. and Markowitsch H. J. (1981) No detectable remote lesions following massive intrastriatal injections of ibotenic acid Brain Res. 225, 446–451

    Article  CAS  PubMed  Google Scholar 

  • Haeusler G. (1971) Early pre-and postlunctional effects of 6-hydroxy-dopamme. J. Pharmacol Exp Ther. 178, 49–62.

    CAS  PubMed  Google Scholar 

  • Haigler H. J. (1981) Serotonergic Receptors m the Central Nervous System, in Neurotranstmitter Receptors. Part 2. Biogenic Armnes. (Yamamura H. I. and Enna S. J., eds.) pp. 1–70, Chapman and Hall, London.

    Chapter  Google Scholar 

  • Hallman H., Lange J., Olson L., Stromberg I., and Jonsson G. (1985) Neurochemical and histochemical characterization of neurotoxic effects of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurones in the mouse. J Neurochem. 44, 117–127

    Article  CAS  PubMed  Google Scholar 

  • Hallman H., Sundstrom E., and Jonsson G. (1984) Effect of the noradrenalme neurotoxm DSP4 on monoamine neurons and their transmitter turnover in rat CNS J Neural Trunsm 60, 89–102

    Article  CAS  Google Scholar 

  • Hamblin M. W., Leff S. E., and Creese I. (1984) Interactions of agonists with D-2 dopamme receptors evidence for a single receptor population existing in multiple agonist affinity states in rat striatal membranes. Biochem Pharmacol 33, 877–887.

    Article  CAS  PubMed  Google Scholar 

  • Hanin I., DeGroat W. C., Mantione C. R, Coyle J. T., and Fisher A (1983) Chemically-induced cholmotoxicity in vivo* studies utilizmg ethylcholine azmdmmm ion (AF64A) Banbury Report 15, Biological Aspects of Alzheimer’s Disease, 243–253

    CAS  Google Scholar 

  • Harik S. I. (1984) Locus ceruleus lesion by local 6-hydroxydopamme infusion causes marked and specific destruction of noradrenergic neurons, long-term depletion of norepmephrme and the enzymes that synthesize it, and enhanced dopammergic mechanisms in the ipsilateral cerebral cortex. J Neurosci 4, 699–707.

    CAS  PubMed  Google Scholar 

  • Harvey J. A., Heller A, and Moore R. Y (1963) The effects of unilateral and bilateral medial forebrain bundle lesions on brain serotonin. J Pharmacol Exper. 140, 103–110.

    CAS  Google Scholar 

  • Hefti F., Melamed E., and Wurtman R J. (1980) Partial lesions of the dopammergic mgrostriatal system in rat brain: Biochemical characterization. Brain Res 195, 123–137.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila R. E, Cabbat F. S., Manzmo L., and Duvoism R. C. (1984) Effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyndme on neostriatal dopamme in mice Neuropharmacology 23, 711–713.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila R. E., Shapiro B. S. and Duvoism R. C. (1981) The relationship between loss of dopamme nerve termmals, striatal [3H]spiroperidol bmdmg and rotational behavior m unilaterally 6-hydroxydopamme-lesioned rats. Brain Res. 211, 285–292.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila R. E and Cabbat F. S. (1977) Chemiluminescence from 6-hydroxydopamme Involvement of hydrogen peroxide, the su-peroxide and the hydroxyl radical, a potential role for singlet oxygen Res Commun Chem Pathol Pharmacol. 17, 649–662

    CAS  PubMed  Google Scholar 

  • Heikkila R. E and Cohen G. (1973) 6-Hydroxydopamine* evidence for superoxide radical as an oxidative intermediate. Science 181, 456–457.

    Article  CAS  PubMed  Google Scholar 

  • Heikkila R. E. and Cohen G. (1971) Inhibition of biogenic amme uptake by hydrogen peroxide A mechanism for toxic effects of 6-hydroxydopamine Science 172, 1257–1258

    Article  CAS  PubMed  Google Scholar 

  • Heller A. and Harvey J. A (1963) Effect of CNS lesions on brain norepmephrme. Pharmacologist 5, 261

    Google Scholar 

  • Heller A., Harvey J. A., and Moore R. Y. (1962) A demonstration of a fall in brain serotonin following central nervous system lesions m the rat. Biochem Pharmacol 11, 859–866

    Article  CAS  PubMed  Google Scholar 

  • Herman B. H., Berger S., and Holtzman S. G. (1983) Comparison of electrical resistance, bubble withdrawal, and stereotaxic method for cannulation of cerebral ventricles J Pharmacol Meth. 10, 143–155.

    Article  CAS  Google Scholar 

  • Hernandez L. and Hoebel B. G. (1982) Overeating after midbrain 6-hydroxydopamine* Prevention by central injection of selective catecholamme reuptake blockers. Brain Res. 245, 333–343

    Article  CAS  PubMed  Google Scholar 

  • Hodgin J. C, Howard P. Y., Ball D. M., Cleoet C., and De Jager L. (1983) An automated device for in situ precolumn derivitization and injection of amino acids for HPLC analysis. J. Chromatog Sci 21, 503–507.

    CAS  Google Scholar 

  • Holdmess M. R. (1983) Chromatographic analysis of glutamic acid decarboxylase in biological samples (review) J Chromatography 277, 1–24

    Article  Google Scholar 

  • Horsley V. and Clarke R. H. (1908) The structure and function of the cerebellum examined by a new method Brain 31, 45–124

    Article  Google Scholar 

  • Hruska R. E., Ludmer L. M., Pert A., and Bunney W. E Jr ( 1984) Effects of lithium on [3H](–)-quinuclidinyl benzilate binding to rat brain muscarinic cholinergic receptors. J Neurosci. Res. 11, 171–177

    Article  CAS  PubMed  Google Scholar 

  • Huff R. M. and Molinoff P. B. (1982) Quantitative determination of dopamme receptor subtypes not linked to activation of adenylate cyclase in rat striatum Proc Nati Acad Sci USA 79, 7561–7565

    Article  CAS  Google Scholar 

  • Hunt W. A. and Dalton T. K. (1983) An automated method for the determination of biogeinc amines and their metabolites by high-performance liquid chromatography Anal Biochem., 135, 269–274

    Article  CAS  PubMed  Google Scholar 

  • Jacoby J. H. and Lytle L. D (Eds.) (1978) Ann. NY Acad. Sci 305.

    Google Scholar 

  • Jaim-Etcheverry G and Zieher L M (1980) DSP-4 A novel compound with neurotoxic effects on noradrenergic neurons of adult and developing rats. Brain Res. 188, 513–523.

    Article  CAS  PubMed  Google Scholar 

  • Jerussi T P. and Glick S D. (1975) Apomorphme-induced rotation in normal rats and interaction with unilateral caudate lesions Psychopharmacology 40, 329–334.

    Article  CAS  Google Scholar 

  • Jeste D V and Smith G. P (1980) Unilateral mesohmbicocortical dopamine denervation decreases locomotion in the open field and after amphetamine. Pharmacol Brochem Behav 12, 453–457.

    Article  CAS  Google Scholar 

  • Jonsson G and Hallman H. (1982) Substance P counteracts neurotoxm damage on norepinephrine neurons in rat brain during ontogeny, Science 215, 75–77

    Article  CAS  PubMed  Google Scholar 

  • Jonsson G. (1980) Chemical neurotoxins as denervation tools in neurobiology. Ann. Rev. Neurosci. 3, 169–187.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson G. (1976) Studies on the mechanisms of 6-hydroxydopamme cytotoxicity Med. Biol. 54, 406–420.

    CAS  PubMed  Google Scholar 

  • Jonsson G., Pycock C., Fuxe K, and Sachs Ch. (1976) Changes m the development of central noradrenalme neurons following neonatal admmistration of 6-hydroxydopamine. J. Neurochem 22, 419.

    Article  Google Scholar 

  • Jonsson G. and Sachs Ch. (1975) On the Mode of Action of 6-Hydroxy-dopamine, in 6-Hydroxydopamine as a Denervation Tool in Catechol-amine Research, (Jonsson G., Malmfors T., and Sachs Ch. eds. pp. 41–50, Elsevier North Holland, Amsterdam.

    Google Scholar 

  • Jonsson G and Sachs Ch. (1973) Pharmacological modifications at the 6-hydroxy-dopa-induced degeneration of central noradrenalme neurons. Biochem. Pharmacol. 22, 1709–1716.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson G., Malmfors T, and Sachs, C. (1972) Effects of drugs on the 6-hydroxydopamme induced degeneration of adrenergic nerves Res Commun. Chem. Pathol. Pharmacol. 3, 543–556

    CAS  PubMed  Google Scholar 

  • Kissinger P. T. and Hememan W R (Eds.) (1984) Laboratory Techniques in Electroanalytical Chemistry Bioanalytical Systems Press, West Lafayette, IN.

    Google Scholar 

  • Kohler C and Schwartz R (1983) Comparison of ibotenate and kamate neurotoxicity in rat brain a histological study. Neuroscience 8, 819–835.

    Article  CAS  PubMed  Google Scholar 

  • Kolb B and Whishaw I. Q. (1980) Fundamentals of Human Neuro-psychology Freeman, NY

    Google Scholar 

  • Kubos K L, Moran T. H., Saad K. M, and Robinson R. G. (1984) Asymmetrical locomotor response to unilateral cortical mjections of DSP-4 Pharmacol. Biochem. Behav 21, 163–168

    Article  CAS  PubMed  Google Scholar 

  • Langston J, W., Ballard P, Tetrud J. W., and Irwin I. (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.

    Article  CAS  PubMed  Google Scholar 

  • Langston J. W., Forno L. S., Robert C S, and Irwin I (1984a) Selective nigral toxicity after systemic admmistration of 1-methyl-Cphenyl-1,2,5,6-tetrahydropyrme (MPTP) in the squirrel monkey Brunt Res 292, 390–394

    Article  CAS  Google Scholar 

  • Langston J. W, Irwin I, Langston E. B, and Forno L. S (1984b) 1-Methyl-4-phenylpyndmmm ion (MPP2 + )* Identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci. Lett. 48, 87–92

    Article  CAS  PubMed  Google Scholar 

  • Leach L., Whishaw I. Q., and Kolb B. (1980) Effects of kamic acid lesions in the lateral hypothalamus on behavior and hippocampal and neocortical electroencephalographic (EEG) activity in the rat. Behav Brain Res. 1, 411–431

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz R. J, Caron M. G., and Stiles G. L. (1984) Mechanisms of membrane-receptor regulation, Biochemical, physiological, and clinical insights derived from studies of the adrenergic receptors New Engl J Med 310, 1570–1579

    Article  CAS  PubMed  Google Scholar 

  • Lefkowrtz R. J, Stadel J. M, and Caron M. G. (1983) Adenylate cyclase-coupled beta-adrenergic receptors structure and mechanisms of activation and desensitization. Ann. Rev. Biochem 52, 159–186.

    Article  Google Scholar 

  • Leslie S. W, Woodward J. J, and Wilcox R. E (1985) Correlation of rates of calcium entry and endogenous dopamme release in mouse striatal synaptosomes. Brain Res 325, 99–105

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Kant G. J., Meyerhoff J. L., and Jarrard L. E. (1984) Noncholmergic neurotoxic effects of AF64A m the substantia nigra Brain Res 305, 169–172

    Article  CAS  PubMed  Google Scholar 

  • Leysen J. E., Geerts R., Gommeren W, Verwimpp M., and Van Gompel P (1982) Regional distribution of serotonin-2 receptor bmdmg sites in the brain and effects of neuronal lesions. Arch. Int Phamacodyn Ther. 256, 301–305

    CAS  Google Scholar 

  • Lidbrmk P. and Jonsson G. (1974) Noradrenalme nerve terminals in the cerebral cortex Effects on noradrenalme uptake and storage following axonal lesion with 6-hydroxydopamine J Neurochem 22 617–626

    Article  Google Scholar 

  • Lidov H G W and Molliver M E (1982) The structure of cerebral cortex in the rat following prenatal administration of 6-hydroxydopamine Devel. Brain Res 3, 81–108

    Article  CAS  Google Scholar 

  • List S. J. and Seeman P (1981) Resolution of dopamine and serotonin receptor components of [3H]spiperone binding to rat brain regions. Proc Natl Acad Sci USA 78, 2620–2624.

    Article  CAS  PubMed  Google Scholar 

  • Llundberg T and Ungerstedt U (1976a) Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamme neurons in the brain. Exper. Neural 53, 585–600.

    Article  Google Scholar 

  • Llundberg T. and Ungerstedt U. (1976b) Reinstatement of eating by dopamme agonists in aphagic dopamme-denervated rats. Physiol Behav. 16, 277–283

    Article  Google Scholar 

  • Lorens S. A, Guldberg H. C, Hole K, Kohler C, and Srebro B (1976) Activity, avoidance, learning and regional 5-hydroxytryptamine following intrabrainstem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat. Brain Res. 108, 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Luciani L (1915) Human Physiology Raven Press, New York

    Google Scholar 

  • Luthin G. R. and Wolfe B B (1984) Comparison of [3H]pirenzepine and [3H]quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain J Pharmacol Exp Ther 228, 648–655

    CAS  PubMed  Google Scholar 

  • Malpeli J G and Burch B. D (1982) Cobalt destroys neurons without destroying fibers of passage in the lateral gemculate nucleus of the cat. Neurosci Lett 32, 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Mantione C. R, Fisher A., and Hanin I. (1981) The AF64A-treated mouse possible model for central cholinergic hypofunction. Science 213, 579–580.

    Article  CAS  PubMed  Google Scholar 

  • Marshall J. F. (1984) Brain function Neural adaptations and recovery from mlury. Ann. Rev Psychol 35, 277–308

    Article  CAS  Google Scholar 

  • Marshall J F, Drew M. C, and Neve K. A (1983) Recovery of function after mesotelencephalic dopammergic mlury in senescence. Brain Res 254, 249–260.

    Article  Google Scholar 

  • Marshall J. F, Berries N, and Sawyer S (1980) Neostriatal dopamine and sensory mattention J Comp Physiol Psychol 94, 833–846

    Article  CAS  PubMed  Google Scholar 

  • Marshall J. F., Richardson J. S, and Teitelbaum P. (1974) Nigrostriatal bundle damage and the lateral hypothalamic syndrome J Camp Physiol. Psychol. 87, 808–830.

    Article  CAS  Google Scholar 

  • Marshall N. B. and Mayer J (1954) Energy balance in goldthioglucose obesity Amer. J Physiol. 178, 271–274.

    CAS  PubMed  Google Scholar 

  • Martin-Iverson M. T, Leclere J. F. and Fibiger H. C (1983) Cholmergic-dopammergic interactions and the mechanisms of action of antidepressants. Eur J. Pharmacol 94, 193–201

    Article  CAS  PubMed  Google Scholar 

  • Mason S T and Fibiger H. C (1979) On the specificity of kamlc acid Science 204, 1339–1341.

    Article  CAS  PubMed  Google Scholar 

  • McGeer E. G. and McGeer P L (1976) Duplication of biochemical changes of Huntmgton’s chorea by intrastriatal mlection of glutamic and kamlc acids Nature (London), 263, 517–519.

    Article  CAS  Google Scholar 

  • McGeer P L, McGeer E G, and Hattori T. (1978), in Kainic Acid as a Tool in Neurobiology (McGeer E. G, Olney J. W., and McGeer P. L., eds.) pp 123–138, Raven Press, New York.

    Google Scholar 

  • Mella H. (1924) The experimental production of basal ganglion symptomatology in Macacus rhesus Arch. Neural. Psychiat. 11, 405417.

    Google Scholar 

  • Mesulam M M, Mufson E J, Warner B. H., and Levey A I. (1983) Central cholinergic pathways in the rat An overview based on alternative nomenclatures (Chs 1-6). Neuroscience 4, 1185–1201.

    Article  Google Scholar 

  • Minneman K. P. (1981) Adrenergic Receptor Molecules, in Neurotrans-mitter Receptors Part 2 Biogenic Amines. (Yamamura H I. and Enna S J, eds.). pp 1–70, Chapman and Hall, London.

    Google Scholar 

  • Molmoff P B., Wolfe B B, and Weiland G. A (1981) Quantitative analysis of drugreceptor interactions II Determmation of the properties of receptor subtypes Life Sci. 29, 427–443.

    Article  Google Scholar 

  • Morgan S, Huston J P, and Pretzel M. (1983) Effects of reducing sensory-motor feedback on the appearance of crossed nigro-thalamic proections and recovery from turnmg induced by unilateral substantia mgra lesions. Brain Res Bull 11, 721–727

    Article  CAS  PubMed  Google Scholar 

  • Myles L. A., Steingart M, Rylett R J., and Colhoun E H (1984) Effect of mjection of cholme mustard into medial septal area of rat brain on biochemical and behavioral parameters. Soc. Neurosci. Abst 10, 1069

    Google Scholar 

  • Nelson D L (1982) Central serotonergic receptors evidence for heterogeneity and characterization by ligand-binding. Neurosci. Bio behav Rev 6, 499–502

    Article  CAS  Google Scholar 

  • Nobin A and Blorklund A (1978) Degenerative effects of various neurotoxic mdoleammes on central monoamine neurons. Ann NY Acad Sci 305, 305–327.

    Article  CAS  PubMed  Google Scholar 

  • Oberlander C, Hunt P F, Dumont C, and Boissier J. R. (1981) Dopamine independent rotational response to unilateral intranigral mlection of serotonin. Life Sci 28, 2595–2601

    Article  CAS  PubMed  Google Scholar 

  • Olney J. W., Hoo L, and Rhea V. (1971) Cytotoxic effects of acidic and sulphur containing ammo acids on the infant mouse central nervous system. Exp. Brain Res. 14, 61–76.

    Article  CAS  PubMed  Google Scholar 

  • Olney J W, Rhee V, and Ho O L (1974) Kainic acid A powerful neurotoxic analogue of glutamate. Brain Res 77, 507–512

    Article  CAS  PubMed  Google Scholar 

  • Ondrusek M. G., Krlts C. D., Frye G. D., Madman R. B., Mueller R A., and Breese G. R. (1981) Behavioral and brochemrcal studies of the scopolamine-induced reversal of neuroleptic activity Psychopharma-cology 73, 17–22.

    Article  CAS  Google Scholar 

  • Poirer L. P, Langelrer P., Roberge A., Boucher R., and Kitskis A. (1972) Nonspecific hlstopathological changes induced by the mtracerebral lqection of 6-hydroxydopamine (6-OH-DA) J Neural Sci. 16, 401–416.

    Article  Google Scholar 

  • Potter P. E., Meek J L., and Neff N H. (1983) Acetylcholme and choline in neuronal tissue measured by HPLC with electrochemrcal detection. J. Neurochem 41, 188–194.

    Article  CAS  PubMed  Google Scholar 

  • Reader T. A. and Briere R. (1983) iong-term unilateral noradrenergic denervatron: monoamine content and [3H]prazosin binding sites in rat neocortex Brain Res. Bull 11, 687–692.

    Article  CAS  PubMed  Google Scholar 

  • Reader T, A and Gauthrer P (1984) Catecholamines and serotonin m the rat central nervous system after 6-OHDA, 5-7-DHT, and pCPA J Neural Transm 59, 207–227.

    Article  CAS  PubMed  Google Scholar 

  • Rchelson E. (1984) Studying neurotransmrtter receptors binding and biologrcal assays. Monogr Neural. Sci 10, 4–19

    Google Scholar 

  • Richter R. (1945) Degeneration of the basal ganglia from carbon disulfide poisoning in monkeys J. Neuropath. Exp Neural. 4, 324–353

    Article  CAS  Google Scholar 

  • Robbins T. W. and Eventt B. J. (1982) Functional studies of the central catecholamines lnt Rev. Neurobiol. 23, 303–365

    Article  CAS  Google Scholar 

  • Robinson R. G. and Coyle J. T (1979) Lateralization of catecholaminergic and behavioral responses to cerebral infarction in the rat. Life Sci 24, 943–950

    Article  CAS  PubMed  Google Scholar 

  • Robinson R. G. and Stitt T. G. (1981) Intracortrcal 6-hydroxydopamme induces an asymmetrical behavioral response in the rat. Brain Res 213, 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Robmson S E. (1983) Effect of specific serotonergrc lesions on cholmergic neurons in the hrppocampus, cortex, and stnatum Life Sci 32, 345–353

    Article  Google Scholar 

  • Robinson T. E., Becker J B, and Camp D M (1983) Sex Differences in Behavioral and Brain Asymmetries, in Hemisyndromes (Myslobodsky, M S., ed), pp 91–128, Academic Press, New York.

    Google Scholar 

  • Rosen G. D., Finklestem S, Stoll A L., Yutzey D. A, and Denenberg V. H (1984) Neurochemrcal asymmetries in the albino rat’s cortex, striatum, and nucleus accumbens. Life Set 34, 1143–1148

    Article  CAS  Google Scholar 

  • Ross S. B. (1976) iong-term effects of N-2-chloroethyl-N-ethyl-2-bromo-benzylamine hydrochloride on noradrenergic neurons in the rat brain and heart. Br J Pharmacol 58, 521–527

    Article  CAS  PubMed  Google Scholar 

  • Roussey G. (1907) La Couche Optique Paris, G. Stemhell.

    Google Scholar 

  • Ruffolo R R Jr ( 1982) Important concepts of receptor theory (review) J Auton Pharmacol 2, 272–295.

    Article  Google Scholar 

  • Rylett B. J and Colhoun E. H. (1980) Kinetrc data on the inhibition of high-affinity choline transport into rat forebrain synaptosomes by choline-like compounds and nitrogen mustard analogs J Neurothem. 34, 713–719.

    Google Scholar 

  • Sachs Ch., Jonsson G, Heikkrla R., and Cohen G (1975) Control of the neurotoxicity of 6-hydroxydopamine by intraneuronal noradrena-line in rat iris. Ada Physiol Scand 93, 345–351.

    Article  CAS  Google Scholar 

  • Sahakian B. J., Wmn P., Robbms T. W., Deelay R. J., Everett B. J., Dunn L. T., Wallace M., and James W P. T. (1983) Changes in body weight and food-related behavior induced by destruction of the ventral or dorsal noradrenergic bundle in the rat Neuroscience 10, 1405–1420

    Article  CAS  PubMed  Google Scholar 

  • Saller C. F. and Stricker E. M. (1978) Gastrointestmal motility and body weight gain in rats after brain serotonin depletion by 5,7-hydroxytryptamine. Neuropharmacology 17, 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg K., Hanm I., Fisher A., and Coyle J T. (1984a) Selective cholmergic neurotoxm AF64A’s effects in rat striatum. Brain Res 293, 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg K., Sanberg P. R., Hanm I, Fisher A., and Coyle J. T (1984b) Cholinergic lesion of the striatum impairs acquisition and retention of a passive avoidance response. Behav. Neurosci. 98, 162–165.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg K., Schnaar R L., Hanm I, and Coyle J. T. (1982) Effects of AF64A on neuroblastoma x glioma hybrid cell line NG-108-15. a neurotoxm selective for cholinergic cells. Sot. Neurosci Abstr 8, 616.

    Google Scholar 

  • Saner A and Thoenen H (1971) Model experiments on the molecular mechanism of action of 6-hydroxydopamine Mol Pharmacol. 7, 147–157.

    CAS  PubMed  Google Scholar 

  • Schallert T. (1983) Sensorimotor impairment and recovery of function in brain-damaged rats Reappearance of symptoms during old age Behav Neurosci 97, 159–164

    Article  CAS  PubMed  Google Scholar 

  • Schallert T. J., Upchurch M, Wilcox R E., and Vaughn D M. (1983) Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum Pharmacol. Biochem. Behav 18, 753–759

    Article  CAS  PubMed  Google Scholar 

  • Schallert T, Upchurch M., Lobaugh N., Farrar S. B., Spirduso W. W., Gilliam P, Vaughn D., and Wilcox R. E. (1982) Tactile extinction: Drstmgurshing between sensorimotor and motor asymmetries in rats with unilateral mgrostrratal damage. Pharmacol Biochem. Behav 16, 455–462.

    Article  CAS  PubMed  Google Scholar 

  • Schallert T., Farrar S, Lobaugh N., Wilcox R. E., and Vaughn D. (1981) Antrcholmergic-induced excessive forward locomotion in rats treated with 6-OHDA m nucleus accumbens, nigrostriatal pathway, spmal subarachnord space, or cerebral ventricles. Soc. Neurosci Abst 7, 565

    Google Scholar 

  • Schallert T. and Whrshaw I Q. (1984) Bilateral cutaneous stimulation of the somatosensory system in hemi-decorticate rats Behav. Neurosci 98, 518–540

    Article  CAS  PubMed  Google Scholar 

  • Schallert T., DeRyck M, and Teitelbaum P. (1980a) Atropine stereotypy as a behavioral trap a movement subsystem and electroencephalo-graphrc analysrs J Comp. Physiol Psychol. 94, 1–24.

    Article  CAS  Google Scholar 

  • Schallert T, Overstreet D. H., and Yamamura H. I. (1980b) Muscarinic receptor binding and behavioral effects of atropine following chrome catecholamine depletion or acetycholinesterase inhibition in rats. Pharmacol Biochem. Behav. 13, 187–192.

    Article  CAS  PubMed  Google Scholar 

  • Schallert T., De Ryck M., Whishaw I Q., Ramirez V D, and Teltelbaum P. (1979) Excessive bracing reactions and their control in an animal analog of parkinsonism. Exp. Neurol. 64, 33–43.

    Article  CAS  PubMed  Google Scholar 

  • Schallert T and Whishaw I Q (1978) Two types of aphagla and two types of sensorimotor impairment after lateral hypothalamic lesions. Observations in normal weight, dieted, and fattened rats. J. Camp Physiol Psycho1 92, 720–741

    Article  CAS  Google Scholar 

  • Schallert T., Whlshaw I Q, Ramlrez V D, and Teltelbaum P (1978) Compulsive, abnormal walking caused by antlcholmergics in aklnetic 6-hydroxydopamme-treated rats Science 199, 1461–1463.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R. H. and Bhatnagar R. K (1979) Assessment of the effects of neonatal subcutaneous 6-hydroxydopamme on noradrenergic and dopammergic innervation of the cerebral cortex. Brain Res 166, 309–313

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld T. A and Hamilton L W (1977) Secondary brain changes following lesions A new paradigm for lesion experlmentation Physiol. Behav 18, 951–967

    Article  CAS  PubMed  Google Scholar 

  • Schwartz R, Kohler C, Fuxe K, Hokfelt T, and Goldstein M (1979) On the Mechanism of Selective Neuronal Degeneration in the Rat Brain* Studies With Ibotemc Acid, in Advances in Neurology, vol 23 (Chase T. H., Wexler N. S, and Barbeau A., eds.), pp 655–668, Raven, New York

    Google Scholar 

  • Seeman P. (1980) Brain dopamine receptors Pharmacol Rev. 32, 229–313.

    CAS  PubMed  Google Scholar 

  • Segal I. H. (1976) Biochemical Calculations (2nd ed ) pp 208–323, Wiley, New York

    Google Scholar 

  • Selller J. and Verger H. (1898) Recherches experimentales sur la physlologle de la couche optlque. Arch de Physiol Norm Path. (S.5) 10, 706–713

    Google Scholar 

  • Sharman D. F (1981) The Turnover of Catecholamines, in Central Transmitter Turnover. (Pycock C. J. and Taberner P. V., eds) pp 20–58, Umversity Park Press, Baltimore

    Chapter  Google Scholar 

  • Shute C. C. D. and Lewis P. R (1967) The ascending cholmergic reticular system. Neocortlcal, olfactory, and subcortlcal prolections Brain 40, 497–520

    Article  Google Scholar 

  • Simansky K J and Harvey J A (1981) Altered sensltlvlty to footshock after selective serotonin depletion Comparison of electrolytic lesions and neurotoxm injections in the medial forebrain bundle of the rat. J. Comp Physiol Psychol 95, 341–350

    Article  CAS  PubMed  Google Scholar 

  • Simon J R, Atweh S, and Kuhar M J (1976) Sodium-dependent high-affinity choline uptake. a regulatory step m the synthesis of acetyl-choline. J. Neurochem 26, 909–922.

    Article  CAS  PubMed  Google Scholar 

  • Singh D. (1975) Experlmental Ablation, in Physiologycal Techniques in Behavioral Research (singh D and Avery D D, eds ) pp. 4467, Wadsworth, Belmont, CA

    Google Scholar 

  • Smith G C, Courtney P G, Wreford, N G M, and Walker M McD (1982) Further studies on the effects of intravenously administered 6-hydroxydopamme on the median eminence of the rat. Brain Res 234, 101–110

    Article  CAS  PubMed  Google Scholar 

  • Snyder S H, Axelrod J., and Zweig M. (1965) A sensitive and specific fluorescence assay for tissue serotonin. Biochem. Pharmacol 14, 831–835

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C., Javoy F., Agid Y., and Glowinski J (1973) Injection of 6-hydroxydopamme in the substantia nigra of the rat. I Morphological study. Brain Res. 58, 269–290

    Article  CAS  PubMed  Google Scholar 

  • Spiegel, E A (1982) Guided Brain Operations, Karger, Basel, pp. 246

    Google Scholar 

  • Spirduso W. W, Gilliam P E, Schallert, T., Upchurch M, Vaughn D M., and Wilcox R E (1984) Reactive capacity: a sensitrve behavioral marker of movement nutiation and nigrostriatal dopamine function Brain Res in press

    Google Scholar 

  • Stachowiak M K, Bruno J P., Snyder A. M, Stricker E M, and Zigmond M. J (1984) Apparent sprouting of striatal serotonergic terminals after dopamme-depleting brain lesions in neonatal rats Brain Res. 291, 164–167

    Article  CAS  PubMed  Google Scholar 

  • Steranka L. R, Polite L N, Perry K. W, and Fuller R. W (1983) Dopamme depletion in rat brain by MPTP (1-methyl-Cphenyl-1,2,3,6-tetrahydropyridine) Res. Commun Subst Abuse 4, 315–323

    CAS  Google Scholar 

  • Stricker E. M. (1983) Brain Neurochemrstry and the Control of Food Intake, in Handbook of Behavioral Neurobiology satinoff E and Teitelbaum P., eds) pp. 329–366, Plenum Press, New York

    Google Scholar 

  • Stricker E M and Zigmond M J (1976) Recovery of Function After Damage to Central Catecholamme-Containing Neurons. A Neurochemical Model for the Lateral Hypothalamic Syndrome, in Progress in Psychobiology and Physiological Psychology, vol 6 (sprague J M and Epstein A N, eds) Academic Press, New York

    Google Scholar 

  • Sutherland R J, Kolb B, Becker J. B. and Whishaw I. Q. (1982a) Neonatal 6-hydroxydopamme admmistration eliminates sparmg of function after neonatal frontal cortex damage Neurosci Lett 31, 125–130.

    Article  Google Scholar 

  • Sutherland R. J, Whishaw I. Q., and Regehr J. C (1982b) Cholmergic receptor blockade impairs spatial localization using distal cues in the rat. J Camp. Physiol. Psychol. 96, 563–573

    Article  CAS  Google Scholar 

  • Swanson L. W., Perez V. J., and Sharpe L. G. (1972) Accurate and reliable intracerebral delivery of minute volumes of drug solutions ] Appl Physiol 33, 247–251

    CAS  Google Scholar 

  • Teitelbaum P and Epstein A N (1962) The lateral hypothalamic syndrome. Recovery of feeding and drinking after lateral hypothalamic lesions Psychol Rev 69, 74–90.

    Article  CAS  PubMed  Google Scholar 

  • Thoenen H and Tranzer J P (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxy-dopamine Naunyn-Schrmedeberg’s Arch Pharmakol Exp Pathol 5,261, 271–288

    Article  Google Scholar 

  • Tranzer J. P. and Thoenen H. (1967) Ultramorphologische Veranderungen der sympatischen Nervenendigungen der Katzenach Vorbehandlmg mit 5-and 6-Hydroxy-Dopamm Naunyn-Schmiedeberg’s Arch. Exp. Pathol Pharmakol 257, 343.

    Article  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxydopamme-induced degeneration of central monoamine neurons Eur J Pharmacol 5, 107–110

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U, (1971a) Adrpsia and aphagia after 6-hydroxydopamine-induced degeneration of the mgrostnatal dopamme system Acta Physiol Scand Suppl. 367, 95–122.

    CAS  Google Scholar 

  • Ungerstedt U. (1971b) Use of Intracerebral Inlections of 6-Hydroxydopamine as a Tool for Morphological and Functional Studies on Central Catecholamme Neurons, in 6-Hydroxydopumine and Catecholaminergic Neurons (eiMalmfors T. and Thoenen H, eds). pp 317–332, North Holland Publ. Amsterdam.

    Google Scholar 

  • Ungerstedt U. and Arbuthnott G. W. (1970) Quantitative recording of rotational behavior m rats after 6-hydroxydopamme lesions of the rugrostrlatal dopamme system. Brain Res 24, 485–493.

    Article  CAS  PubMed  Google Scholar 

  • Van der Hyden J. A M, Venema K., and Korf J. (1979) In vlvo release of endogenous GABA from rat substantla mgra measured by a novel method J Neurochem. 32, 469–476.

    Article  Google Scholar 

  • Venema K., Leever W, Bakker J D, Haayer G., and Korf J. (1983) Automated precolumn derivitization device to determine neurotransmitter and other amino acids by reverse-phase high-performance liquid chromatography. J Chromatog. 260, 371–376.

    Article  CAS  Google Scholar 

  • Waddmgton J. L. and Crow T. J (1979) Drug-induced rotational behavior following unilateral intracerebral injection of saline-ascorbate solution: neurotoxlclty of ascorbic acid and monoamine-independent circling Brain Res 161, 371–376

    Article  Google Scholar 

  • Waddington J. L and Cross A. J (1980) Characterlzation of denervation supersensltlvlty in the strlatonigral GABA pathway of the kamlc acid-lesloned rat and in Huntington’s disease. Brain Res Bull 5, Suppl. 2, 825–828

    Article  Google Scholar 

  • Walker A E (1957) Stimulation and ablation. Their role in the history of cerebral physiology J. Neurophysiol. 20, 435–449

    CAS  PubMed  Google Scholar 

  • Wastek, G. J. and Yamamura H. I. (1981) Acetylcholme Receptors, in Neurotransmitter Receptors Part 2 Biogenic Amines. (Yamamura H I and Enna S. J., eds.) pp 1–70, Chapman and Hall, London.

    Google Scholar 

  • Welland G. A. and Molmoff P B (1981) Quantltatlve analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci 29, 313–330

    Article  Google Scholar 

  • Wenk G., Hepler D, and Olton D. S (1984) Behavior alters the uptake of [3H] choline into acetylcholinergic neurons of the nucleus basalls magnocellularls and medial septal area. Behav Brain Res. 13, 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Wenk G. L. and Olton D. S. (1984) Recovery of neocortlcal choline acetyltransferase activity following lbotenic acid injection into the nucleus basalis of Meynert in rats. Brain Res 293, 184–186

    Article  CAS  PubMed  Google Scholar 

  • Westerink B H. C (1984) Determination of normetanephrine, 3,4-dihy-droxyphenylethyleneglycol (free and total), and 3-methoxy-4-hydroxyphenylethyleneglycol (free and total) in rat brain by high-performance liquid chromatography with electrochemical detection and effects of drugs on regional concentrations J Neurochem, 42, 934–942

    Article  CAS  PubMed  Google Scholar 

  • Whishaw I Q, Robinson T. E., Schallert T, De Ryck M, and Ramirez V D (1978) Electrical activity of the hlppocampus and neocortex in rats depleted of brain dopamine and norepmephrme: Relations to behavior and effects of atropme. Exp. Neural 62, 748–767

    Article  CAS  Google Scholar 

  • Wilcox R. E., Woodward J, J., Vaughn D. M., and Rffee W. H. (1983) Selective down-regulation of dopaminergic autoreceptors by dopamine aganist pretreatments. Assessment by endogenous fastphase release of striatal dopamme. Comparison with behavioral, receptor binding, and tyrosme hydroxylase studies. Soc. Neurosci Abstr 1110.

    Google Scholar 

  • Williams L T and Lefkowitz R. J. (1978) Receptor Binding Studies in Adrenergic Pharmacology Raven Press, New York

    Google Scholar 

  • Willis G. L. and Smith G C (1984) A role for amine accumulation in the syndrome of ingestive deficits following lateral hypothalamic lesions. Appetite 5, 239–262.

    Article  CAS  PubMed  Google Scholar 

  • Willis G. L. and Smith G. C (1982) The behavioral effects of intrahypothalamic multistage versus single injections of 6-hydroxydopamine Brain Res 245, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Willis G. L., Singer G., and Evans B. K. (1976) Intracranial mlections of 6-OHDA. Comparison of catecholamine depleting effects of dlfferent volumes and concentrations. Pharmacol Blochem Behav 5, 207–213

    Article  CAS  Google Scholar 

  • Wolfarth S., Coelle E-F, Osborne N. N., and Sontag K.-H. (1977) Evidence for a neurotoxic effect of ascorbic acid after an mtranigral injection in the cat. Neurosci. Lett. 185, 183–186

    Article  Google Scholar 

  • Woodward J. J., Wilcox R. E, Riffee W. H, and Leslie S. W. Single dopamme agonist pretreatments and striatal functions Relationship between fast-phase endogenous dopamine release in vitro, dopamme synthesis, and metabolism in vivo and behavior. J Neurochem, in preparation

    Google Scholar 

  • Woodward J. J, Wilcox R E, Leslie S. W., and Riffee W H Rapid uptake of dopamme by mouse striatal synaptosomes. J. Neurochem., submitted.

    Google Scholar 

  • Yaksh T. L. and Rudy T A (1976) Chronic catheterization of the spinal subarachnoid space. Physiol Behav 17, 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto B. K and Freed C. R. (1984) Asymmetric dopamme and serotonin metabolism m mgrostriatal and limbic structures of the tramed circling rat. Brain Res. 297, 115–119

    Article  CAS  PubMed  Google Scholar 

  • Yamamura H. I., Enna S J and Kuhar M. J. (1985) Neurotransmitter Receptor Binding (2nd ed.) Raven Press, New York.

    Google Scholar 

  • Yamamura H. I., Enna S J, and Kuhar M. J. (eds) (1978) Neurotransmitter Receptor Binding Raven Press, New York.

    Google Scholar 

  • Young R M (1970) Mend, Brain, and Adaptation in the Nineteenth Century Cerebral Localization and Its Biological Contexf from Gall to Ferrier Oxford, Clarendon Press

    Google Scholar 

  • Zigmond M. J., Acheson A. L., Stachowiak M. K., and Stricker E M (1984) Neurochemical compensation after rugrostriatal bundle injury in an ammal model of preclmical parkmsonism Arch. Neural 41, 856–861.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this protocol

Cite this protocol

Schallert, T., Wilcox, R.E. (1985). Neurotransimitter-Selective Brain Lesions. In: Boulton, A.A., Baker, G.B. (eds) General Neurochemical Techniques. Neuromethods, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-075-x:343

Download citation

  • DOI: https://doi.org/10.1385/0-89603-075-x:343

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-075-6

  • Online ISBN: 978-1-59259-606-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics