Pyrosequencing® Protocols pp 157-175

Part of the Methods in Molecular Biology™ book series (MIMB, volume 373)

Detection of Allelic Imbalance in Gene Expression Using Pyrosequencing®

  • Hua Wang
  • Steven C. Elbein

Abstract

Single-nucleotide polymorphisms (SNPs) are common in the human genome, with more than 11 million SNPs having frequencies greater than 1%. The challenge is to identify the minority of functional SNPs from the large number of SNPs that are expected to be silent. Whereas coding variants are unusual, and functional (nonsynonymous) coding SNPs likely rare, regulatory SNPs appear to be common. Traditional methods to identify these SNPs in vitro are time consuming and challenging. An alternative method is to examine the allele-specific expression in the cDNA from tissues expressing the genes of interest and in individuals heterozygous for a transcribed SNP. This method permits expression to be evaluated in the context of the same trans-acting factors and to identify genes with likely cis-acting regulatory variants or parent of origin (imprinting) effects. Such studies require a method to reliably quantify the expression from each allele. Pyrosequencing offers such capabilities, and given the relatively low cost and high throughput, it offers a sensitive method to determine allelic imbalance in the cDNA from tissues expressing genes of interest.

References

  1. 1.
    Cheung, V. G., Spielman, R. S., Ewens, K. G., et al. (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369.CrossRefPubMedGoogle Scholar
  2. 2.
    Monks, S. A., Leonardson, A., Zhu, H., et al. (2004) Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105.CrossRefPubMedGoogle Scholar
  3. 3.
    Farh, K. K., Grimson, A., Jan, C., et al. (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821.CrossRefPubMedGoogle Scholar
  4. 4.
    Bento J. L., Palmer, N. D., Mychaleckyj, J. C., et al. (2004) Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 53, 3007–3012.CrossRefPubMedGoogle Scholar
  5. 5.
    Grant, S. F., Thorleifsson, G., Reynisdottir, I., et al. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323.CrossRefPubMedGoogle Scholar
  6. 6.
    Horikawa, Y., Oda, N., Cox, N. J., et al. (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 26, 163–175.CrossRefPubMedGoogle Scholar
  7. 7.
    Mohlke, K. L. and Boehnke, M. (2005) The role of HNF4A variants in the risk of type 2 diabetes. Curr. Diab. Rep. 5, 149–156.CrossRefPubMedGoogle Scholar
  8. 8.
    Ben Asher, E. and Lancet, D. (2004) 5-Lipoxygenase activating protein (ALOX5AP): association with cardiovascular infarction and stroke. Isr. Med. Assoc. J. 6, 318–319.Google Scholar
  9. 9.
    Helgadottir, A., Manolescu, A., Thorleifsson, G., et al. (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet. 36, 233–239.CrossRefPubMedGoogle Scholar
  10. 10.
    Helgadottir, A., Manolescu, A., Thorleifsson, G., et al. (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet. 36, 233–239.CrossRefPubMedGoogle Scholar
  11. 11.
    Sayers, I., Barton, S., Rorke, S., et al. (2003) Promoter polymorphism in the 5-lipoxygenase (ALOX5) and 5-lipoxygenase-activating protein (ALOX5AP) genes and asthma susceptibility in a Caucasian population. Clin. Exp. Allergy 33, 1103–1110.CrossRefPubMedGoogle Scholar
  12. 12.
    Van Eerdewegh, P., Little, R. D., Dupuis, J., et al. (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430.CrossRefPubMedGoogle Scholar
  13. 13.
    Vermeire, S. and Rutgeerts, P. (2005) Current status of genetics research in inflammatory bowel disease. Genes Immun. 6, 637–645.PubMedGoogle Scholar
  14. 14.
    Baier, L. J., Permana, P. A., Yang, X., et al. (2000) A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J. Clin. Invest. 106, R69–R73.CrossRefPubMedGoogle Scholar
  15. 15.
    Yan, H., Yuan, W., Velculescu, V. E., et al. (2002) Allelic variation in human gene expression. Science 297, 1143.CrossRefPubMedGoogle Scholar
  16. 16.
    Morley, M., Molony, C. M., Weber, T. M., et al. (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747.CrossRefPubMedGoogle Scholar
  17. 17.
    Stranger, B. E., Forrest, M. S., Clark, A. G., et al. (2005) Genome-wide associations of gene expression variation in humans. PLoS. Genet. 1, e78.CrossRefPubMedGoogle Scholar
  18. 18.
    Buckland, P. R. (2005) The importance and identification of regulatory polymorphisms and their mechanisms of action. Biochim. Biophys. Acta. 1762, 17–28.PubMedGoogle Scholar
  19. 19.
    Pastinen, T., Sladek, R., Gurd, S., et al. (2004) A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16, 184–193.PubMedGoogle Scholar
  20. 20.
    Wang, H., Zhang, H., Jia, Y., et al. (2004) Adiponectin receptor 1 gene (ADIPOR1) as a candidate for type 2 diabetes and insulin resistance. Diabetes 53, 2132–2136.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang, H., Zhang, Z., Chu, W., et al. (2005) Molecular screening and association analyses of the interleukin 6 receptor gene variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity. J. Clin. Endocrinol. Metab. 90, 1123–1129.CrossRefPubMedGoogle Scholar
  22. 22.
    Bray, N. J., Buckland, P. R., Owen, M. J., et al. (2003) Cis-acting variation in the expression of a high proportion of genes in human brain. Hum. Genet. 113, 149–153.PubMedGoogle Scholar
  23. 23.
    Lo, H. S., Wang, Z., Hu, Y., et al. (2003) Allelic variation in gene expression is common in the human genome. Genome Res. 13, 1855–1862.CrossRefPubMedGoogle Scholar
  24. 24.
    Ge, B., Gurd, S., Gaudin, T., et al. (2005) Survey of allelic expression using EST mining. Genome Res. 15, 1584–1591.CrossRefPubMedGoogle Scholar
  25. 25.
    Knight, J. C., Keating, B. J., Rockett, K. A., et al. (2003) In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nat. Genet. 33, 469–475.CrossRefPubMedGoogle Scholar
  26. 26.
    Das, S. K., Chu, W., Zhang, Z., et al. (2004) Calsquestrin 1 (CASQ1) gene polymorphisms under chromosome 1q21 linkage peak are associated with type 2 diabetes in Northern European Caucasians. Diabetes 53, 3300–3306.CrossRefPubMedGoogle Scholar
  27. 27.
    Elbein, S. C., Zheng, H., Jia, Y., et al. (2004) Molecular screening of the human glutamine-fructose-6-phosphate amidotransferase 1 (GFPT1) gene and association studies with diabetes and diabetic nephropathy. Mol. Genet. Metab. 82, 321–328.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang, H., Jia, Y., Cooper, J. J., et al. (2004) Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels. J. Clin. Endocrinol. Metab. 89, 748–755.CrossRefPubMedGoogle Scholar
  29. 29.
    Sun, A., Ge, J., Siffert, W., et al. (2005) Quantification of allele-specific G-protein beta3 subunit mRNA transcripts in different human cells and tissues by Pyrosequencing. Eur. J. Hum. Genet. 13, 361–369.CrossRefPubMedGoogle Scholar
  30. 30.
    Gruber, J. D., Colligan, P. B., and Wolford, J. K. (2002) Estimation of single nucleotide polymorphism allele frequency in DNA pools by using Pyrosequencing. Hum. Genet. 110, 395–401.CrossRefPubMedGoogle Scholar
  31. 31.
    Wasson, J., Skolnick, G., Love-Gregory, L., et al. (2002) Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by Pyrosequencing technology. BioTechniques 32, 1144–1150.PubMedGoogle Scholar
  32. 32.
    Pastinen, T., Ge, B., Gurd S., et al. (2005) Mapping common regulatory variants to human haplotypes. Hum. Mol. Genet. 14, 3963–3971.CrossRefPubMedGoogle Scholar
  33. 33.
    Gabriel, S. B., Schaffner, S. F., Nguyen, H., et al. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–2229.CrossRefPubMedGoogle Scholar
  34. 34.
    Gibbs, R. A., Belmont, J. W., Hardenbol, P., et al. (2003) The International HapMap Project. Nature 426, 789–796.CrossRefGoogle Scholar
  35. 35.
    Xie, X., Lu, J., Kulbokas, E. J., et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Hua Wang
    • 1
  • Steven C. Elbein
    • 1
  1. 1.Division of Endocrinology, Department of Internal Medicine, Central Arkansas Veterans Healthcare System and College of MedicineUniversity of Arkansas for Medical SciencesLittle Rock

Personalised recommendations