An In Vivo Assay to Quantify Stable Protein Phosphatase 2A (PP2A) Heterotrimeric Species

  • Matthew S. Gentry
  • Richard L. Hallberg
  • David C. Pallas
Part of the Methods in Molecular Biology book series (MIMB, volume 365)


Protein phosphatase 2A (PP2A) regulates a broad spectrum of cellular processes. The enzyme is, in fact, largely a collection of varied heterotrimeric species composed of a catalytic (C) subunit and regulatory (B-type) subunit bound together by a structural (A) subunit. One important feature of the C subunit is that its carboxy-terminus can be modified by phosphorylation and methylation. The mechanisms that trigger such posttranslational modifications, as well as their consequences, are still under investigation. However, data collected thus far indicate that these modifications alter the binding to B subunits for an AC dimer, thereby affecting the makeup of the PP2A species in the cell. In this chapter, we describe an in vivo assay for assessing stable PP2A heterotrimer formation that is based on specific subcellular localizations of PP2A heterotrimers. This assay can be used to study the impact of a wide variety of alterations (such as mutations and covalent modifications) on PP2A heterotrimer formation. We specifically describe the use of this assay to quantify the effects of methylation on the stable formation of PP2ARts1p and PP2ACdc55p heterotrimers.

Key Words

Protein phosphatase 2A PP2A GFP methylation phosphorylation 


  1. 1.
    Mumby, M. C. and Walter, G. (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol. Rev. 73, 673–699.PubMedGoogle Scholar
  2. 2.
    Schonthal, A. H. (1998) Role of PP2A in intracellular signal transduction pathways. Front. Biosci. 3, D1262–D1273.PubMedGoogle Scholar
  3. 3.
    Millward, T. A., Zolnierowicz, S., and Hemmings, B. A. (1999) Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24, 186–191.PubMedCrossRefGoogle Scholar
  4. 4.
    Virshup, D. M. (2000) Protein phosphatase 2A: a panoply of enzymes. Curr. Opin. Cell. Biol. 12, 180–185.PubMedCrossRefGoogle Scholar
  5. 5.
    Janssens, V. and Goris, J. (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439.PubMedCrossRefGoogle Scholar
  6. 6.
    van Zyl, W., Huang, W., Sneddon, A. A., et al. (1992) Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 4946–4959.PubMedGoogle Scholar
  7. 7.
    van Zyl, W. H., Wills, N., and Broach, J. R. (1989) A general screen for mutant of Saccharomyces cerevisiae deficient in tRNA biosynthesis. Genetics 123, 55–68.PubMedGoogle Scholar
  8. 8.
    Ronne, H., Carlberg, M., Hu, G. Z., and Nehlin, J. O. (1991) Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol. Cell. Biol. 11, 4876–4884.PubMedGoogle Scholar
  9. 9.
    Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., DePaoli-Roach, A. A., and Pringle, J. R. (1991) CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol. Cell. Biol. 11, 5767–5780.PubMedGoogle Scholar
  10. 10.
    Shu, Y. and Hallberg, R. L. (1995) SCS1, a multicopy suppressor of hsp60-ts mutant alleles, does not encode a mitochondrially targeted protein. Mol. Cell. Biol. 15, 5618–5626.PubMedGoogle Scholar
  11. 11.
    Shu, Y., Yang, H., Hallberg, E., and Hallberg, R. (1997) Molecular genetic analysis of Rts1p, a B′ regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A. Mol. Cell. Biol. 17, 3242–3253.PubMedGoogle Scholar
  12. 12.
    Chen, J., Martin, B. L., and Brautigan, D. L. (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261–1264.PubMedCrossRefGoogle Scholar
  13. 13.
    Guo, H. and Damuni, Z. (1993) Autophosphorylation-activated protein kinase phosphorylates and inactivates protein phosphatase 2A. Proc. Natl. Acad. Sci. USA 90, 2500–2504.PubMedCrossRefGoogle Scholar
  14. 14.
    Turowski, P., Fernandez, A., Favre, B., Lamb, N. J., and Hemmings, B. A. (1995) Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. .J Cell. Biol. 129, 397–410.PubMedCrossRefGoogle Scholar
  15. 15.
    Kowluru, A., Seavey, S. E., Rabaglia, M. E., Nesher, R., and Metz, S. A. (1996) Carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-secreting cells: evidence for functional consequences on enzyme activity and insulin secretion. Endocrinology 137, 2315–2323.PubMedCrossRefGoogle Scholar
  16. 16.
    Bryant, J. C., Westphal, R. S., and Wadzinski, B. E. (1999) Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem. J. 339(Pt. 2), 241–246.PubMedCrossRefGoogle Scholar
  17. 17.
    Gentry, M. S., Li, Y., Wei, H., et al. (2005) A Novel Assay for Protein Phosphatase 2A (PP2A) Complexes In Vivo Reveals Differential Effects of Covalent Modifications on Different Saccharomyces cerevisiae PP2A Heterotrimers. Eukaryot. Cell. 4, 1029–1040.PubMedCrossRefGoogle Scholar
  18. 18.
    Wei, H., Ashby, D. G., Moreno, C. S., et al. (2001) Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J. Biol. Chem. 276, 1570–1577.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu, J., Tolstykh, T., Lee, J., Boyd, K., Stock, J. B., and Broach, J. R. (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J. 19, 5672–5681.PubMedCrossRefGoogle Scholar
  20. 20.
    Tolstykh, T., Lee, J., Vafai, S., and Stock, J. B. (2000) Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J. 19, 5682–5691.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu, X. X., Du, X., Moreno, C. S., et al. (2001) Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Mol. Biol. Cell. 12, 185–199.PubMedGoogle Scholar
  22. 22.
    Gentry, M. S. and Hallberg, R. L. (2002) Localization of Saccharomyces cerevisiae protein phosphatase 2A subunits throughout mitotic cell cycle. Mol. Biol. Cell. 13, 3477–3492.PubMedCrossRefGoogle Scholar
  23. 23.
    Ogris, E., Gibson, D. M., and Pallas, D. C. (1997) Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene 15, 911–917.PubMedCrossRefGoogle Scholar
  24. 24.
    Dobbelaere, J., Gentry, M. S., Hallberg, R. L., and Barral, Y. (2003) Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357.PubMedCrossRefGoogle Scholar
  25. 25.
    Rines, D. R., He, X., and Sorger, P. K. (2002) Quantitative microscopy of green fluorescent protein-labeled yeast. Methods Enzymol. 351, 16–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Stotz, A. and Linder, P. (1990) The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene 95, 91–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Sherman, F. (2002) Getting started with yeast. Methods Enzymol. 350, 3–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Tatchell, K. and Robinson, L. C. (2002) Use of green fluorescent protein in living yeast cells. Methods Enzymol. 351, 661–683.PubMedCrossRefGoogle Scholar
  29. 29.
    Gietz, R. D. and Sugino, A. (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.PubMedCrossRefGoogle Scholar
  30. 30.
    Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.PubMedGoogle Scholar
  31. 31.
    Cai, T., Reilly, T. R., Cerio, M., and Schmitt, M. E. (1999) Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. Mol. Cell. Biol. 19, 7857–7869.PubMedGoogle Scholar
  32. 32.
    Fox, T. D., Folley, L. S., Mulero, J. J., et al. (1991) Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 194, 149–165.PubMedCrossRefGoogle Scholar
  33. 33.
    Davis, L. I. and Fink, G. R. (1990) The NUP1 gene encodes an essential component of the yeast nuclear pore complex. Cell 61, 965–978.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Matthew S. Gentry
    • 1
  • Richard L. Hallberg
    • 2
  • David C. Pallas
    • 3
    • 4
  1. 1.Department of PharmacologyUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of BiologySyracuse UniversitySyracuseUSA
  3. 3.Department of BiochemistryEmory University School of MedicineAtlantaUSA
  4. 4.Winship Cancer InstituteEmory University School of MedicineAtlantaUSA

Personalised recommendations