Synthesis of Degenerated Libraries of the Ras-Binding Domain of Raf and Rapid Selection of Fast-Folding and Stable Clones With the Dihydrofolate Reductase Protein Fragment Complementation Assay

  • François-Xavier Campbell-Valois
  • Stephen W. Michnick
Part of the Methods in Molecular Biology™ book series (MIMB, volume 352)


The protein-engineering field is mainly concerned with the design of novel enzyme activities or folds and with understanding the fundamental sequence determinants of protein folding and stability. Much effort has been put into the design of methods to generate and screen libraries of polypeptides. Screening for the ability of proteins to bind with high affinity and/or specificity is most often approached with phage display technologies. In this chapter, we present an alternative to phage display, performed totally in vivo, based on the dihydrofolate reductase (DHFR) protein-fragment complementation assay (PCA). We describe the application of the DHFR PCA to the selection of degenerated sequences of the ras-binding domain (RBD) of raf for correct folding and binding to ras. Our screening system allows for enrichment of the libraries for the best-behaving sequences through iterative competition experiments, without the discrete library screening and expansion steps that are necessary in in vitro approaches. Moreover, the selected clones can be processed rapidly to purification by Ni-nitrilotriacetic acid (NTA) affinity chromatography in 96-well plates. Our methods are particularly suitable for the designing and screening of libraries aimed at studying sequence folding and binding determinants. Finally, it can be adapted for library-against-library screening, thus, allowing for coevolution of interacting proteins simultaneously.

Key Words

Protein-fragment complementation assays dihydrofolate reductase bacterial survival assay phage display protein-protein interactions protein engineering protein folding degenerated libraries polymerase chain reaction binding assays 6xHis-tag affinity purification 


  1. 1.
    Chen, K. Q. and Arnold, F. H. (1991) Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Biotechnology (NY) 9, 1073–1077.CrossRefGoogle Scholar
  2. 2.
    Chen, K. Q., Robinson, A. C., Van Dam, M. E., Martinez, P., Economou, C., and Arnold, F. H. (1991) Enzyme engineering for nonaqueous solvents. II. Additive effects of mutations on the stability and activity of subtilisin E in polar organic media. Biotechnol. Prog. 7, 125–129.PubMedCrossRefGoogle Scholar
  3. 3.
    Iffland, A., Tafelmeyer, P., Saudan, C., and Johnsson, K. (2000) Directed molecular evolution of cytochrome c peroxidase. Biochemistry 39, 10,790–10,798.PubMedCrossRefGoogle Scholar
  4. 4.
    Scott, J. K. and Smith, G. P. (1990) Searching for peptide ligands with an epitope library. Science 249, 386–390.PubMedCrossRefGoogle Scholar
  5. 5.
    Lowman, H. B., Bass, S. H., Simpson, N., and Wells, J. A. (1991) Selecting high-affinity binding proteins by monovalent phage display. Biochemistry 30, 10,832–10,838.PubMedCrossRefGoogle Scholar
  6. 6.
    Keefe, A. D. and Szostak, J. W. (2001) Functional proteins from a random-sequence library. Nature 410, 715–718.PubMedCrossRefGoogle Scholar
  7. 7.
    Imanaka, T., Shibazaki, M., and Takagi, M. (1986) A new way of enhancing the thermostability of proteases. Nature 324, 695–697.PubMedCrossRefGoogle Scholar
  8. 8.
    Shih, P. and Kirsch, J. F. (1995) Design and structural analysis of an engineered thermostable chicken lysozyme. Protein. Sci. 4, 2063–2072.PubMedCrossRefGoogle Scholar
  9. 9.
    Riddle, D. S., Santiago, J. V., Bray-Hall, S. T., et al. (1997) Functional rapidly folding proteins from simplified amino acid sequences. Nat. Struct. Biol. 4, 805–809.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, D. E., Gu, H., and Baker, D. (1998) The sequences of small proteins are not extensively optimized for rapid folding by natural selection. Proc. Natl. Acad. Sci. USA 95, 4982–4986.PubMedCrossRefGoogle Scholar
  11. 11.
    Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M., and Hecht, M. H. (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685.PubMedCrossRefGoogle Scholar
  12. 12.
    Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.PubMedCrossRefGoogle Scholar
  13. 13.
    Crameri, A., Raillard, S. A., Bermudez, E., and Stemmer, W. P. (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F. H. (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261.PubMedCrossRefGoogle Scholar
  15. 15.
    Ostermeier, M., Shim, J. H., and Benkovic, S. J. (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205–1209.PubMedCrossRefGoogle Scholar
  16. 16.
    Lutz, S. and Benkovic, S. J. (2000) Homology-independent protein engineering. Curr. Opin. Biotechnol. 11, 319–324.PubMedCrossRefGoogle Scholar
  17. 17.
    Coco, W. M., Levinson, W. E., Crist, M. J., et al. (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19, 354–359.PubMedCrossRefGoogle Scholar
  18. 18.
    Murakami, H., Hohsaka, T., and Sisido, M. (2002) Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nat. Biotechnol. 20, 76–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Crameri, A., Dawes, G., Rodriguez, E., Jr., Silver, S., and Stemmer, W. P. (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotechnol. 15, 436–438.PubMedCrossRefGoogle Scholar
  20. 20.
    Christians, F. C., Scapozza, L., Crameri, A., Folkers, G., and Stemmer, W. P. (1999) Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat. Biotechnol. 17, 259–264.PubMedCrossRefGoogle Scholar
  21. 21.
    MacBeath, G., Kast, P., and Hilvert, D. (1998) Redesigning enzyme topology by directed evolution. Science 279, 1958–1961.PubMedCrossRefGoogle Scholar
  22. 22.
    Ostermeier, M., Nixon, A. E., Shim, J. H., and Benkovic, S. J. (1999) Combinatorial protein engineering by incremental truncation. Proc. Natl. Acad. Sci. USA 96, 3562–3567.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Neil, K. T. and Hoess, R. H. (1995) Phage display: protein engineering by directed evolution. Curr. Opin. Struct. Biol. 5, 443–449.PubMedCrossRefGoogle Scholar
  24. 24.
    Roberts, R. W. and Szostak, J. W. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12,297–12,302.PubMedCrossRefGoogle Scholar
  25. 25.
    Firestine, S. M., Salinas, F., Nixon, A. E., Baker, S. J., and Benkovic, S. J. (2000) Using an AraC-based three-hybrid system to detect biocatalysts in vivo. Nat. Biotechnol. 18, 544–547.PubMedCrossRefGoogle Scholar
  26. 26.
    Hanes, J., Jermutus, L., and Plückthun, A. (2000) Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol. 328, 404–430.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.PubMedCrossRefGoogle Scholar
  28. 28.
    Dunn, I. S. (1996) Phage display of proteins. Curr. Opin. Biotechnol. 7, 547–553.PubMedCrossRefGoogle Scholar
  29. 29.
    Forrer, P., Jung, S., and Plückthun, A. (1999) Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr. Opin. Struct. Biol. 9, 514–520.PubMedCrossRefGoogle Scholar
  30. 30.
    Sidhu, S. S., Lowman, H. B., Cunningham, B. C., and Wells, J. A. (2000) Phage display for selection of novel binding peptides. Methods Enzymol. 328, 333–363.PubMedCrossRefGoogle Scholar
  31. 31.
    Pelletier, J. N., Campbell-Valois, F.-X., and Michnick, S. W. (1998) Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally-design fragments. Proc. Natl. Acad. Sci. USA 95, 12,141–12,146.PubMedCrossRefGoogle Scholar
  32. 32.
    Pelletier, J. N., Arndt, K. M., Plückthun, A., and Michnick, S. W. (1999) An in vivo library-versus-library selection of optimized protein-protein interactions. Nat. Biotechnol. 17, 683–690.PubMedCrossRefGoogle Scholar
  33. 33.
    Michnick, S. W., Remy, I., Campbell-Valois, F. X., Vallee-Belisle, A., and Pelletier, J. N. (2000) Detection of protein-protein interactions by protein fragment complementation strategies. Methods Enzymol. 328, 208–230.PubMedCrossRefGoogle Scholar
  34. 34.
    Michnick, S. W. (2001) Exploring protein interactions by interaction-induced folding of proteins from complementary peptide fragments. Curr. Opin. Struct. Biol. 11, 472–477.PubMedCrossRefGoogle Scholar
  35. 35.
    Appleman, J. R., Prendergast, N., Delcamp, T. J., Freisheim, J. H., and Blakley, R. L. (1988) Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase. J. Biol. Chem. 263, 10,304–10,313.PubMedGoogle Scholar
  36. 36.
    Arndt, K. M., Pelletier, J. N., Muller, K. M., Alber, T., Michnick, S. W., and Plückthun, A. (2000) A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library ensemble. J. Mol. Biol. 295, 627–639.PubMedCrossRefGoogle Scholar
  37. 37.
    Mossner, E., Koch, H., and Plückthun, A. (2001) Fast selection of antibodies without antigen purification: adaptation of the protein fragment complementation assay to select antigen-antibody pairs. J. Mol. Biol. 308, 115–122.PubMedCrossRefGoogle Scholar
  38. 38.
    Michnick, S. W. and Shakhnovich, E. (1998) A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies. Fold. Des. 3, 239–251.PubMedCrossRefGoogle Scholar
  39. 39.
    Campbell-Valois, F. X., Tarassov, K., and Michnick, S. W. (2005) Massive sequence perturbation of a small protein. Proc. Natl. Acad. Sci. USA 102, 14,988–14,993.PubMedCrossRefGoogle Scholar
  40. 40.
    Gu, H., Yi, Q., Bray, S. T., Riddle, D. S., Shiau, A. K., and Baker, D. (1995) A phage display system for studying the sequence determinants of protein folding. Protein Sci. 4, 1108–1117.PubMedCrossRefGoogle Scholar
  41. 41.
    Emerson, S. D., Waugh, D. S., Scheffler, J. E., Tsao, K. L., Prinzo, K. M., and Fry, D. C. (1994) Chemical shift assignments and folding topology of the Ras-binding domain of human Raf-1 as determined by heteronuclear three-dimensional NMR spectroscopy. Biochemistry 33, 7745–7752.PubMedCrossRefGoogle Scholar
  42. 42.
    Emerson, S. D., Madison, V. S., Palermo, R. E., et al. (1995) Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface. Biochemistry 34, 6911–6918.PubMedCrossRefGoogle Scholar
  43. 43.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Bacterial media, antibiotics and bacterial strains, in Molecular Cloning (Nolan, C., ed.), vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p. A.3.Google Scholar
  44. 44.
    Remy, I., Wilson, I. A., and Michnick, S. W. (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993.PubMedCrossRefGoogle Scholar
  45. 45.
    Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560.PubMedCrossRefGoogle Scholar
  46. 46.
    Block, C., Janknecht, R., Herrmann, C., Nassar, N., and Wittinghofer, A. (1996) Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Nat. Struct. Biol. 3, 244–251.PubMedCrossRefGoogle Scholar
  47. 47.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Alkalyne lysis and PEG preparation for large scale DNA preparation, in Molecular Cloning, vol. 1 (Nolan, C., ed.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1.38–1.41.Google Scholar
  48. 48.
    Seidman, C. E., Struhl, K., Sheen, J., and Jessen, T. (1997) Introduction of plasmid DNA into cells, basic protocol 2, in Current Protocols in Molecular Biology, vol. 1,Suppl 37 (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.) John Wiley & Sons, Inc., New York, NY, pp. 1.8.4–1.8.5.Google Scholar
  49. 49.
    Inoue, H., Nojima, H., and Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Sarkar, G. and Sommer, S. S. (1990) The “megaprimer” method of site-directed mutagenesis. Biotechniques 8, 404–407.PubMedGoogle Scholar
  51. 51.
    Brons-Poulsen, J., Petersen, N. E., Horder, M., and Kristiansen, K. (1998) An improved PCR-based method for site directed mutagenesis using megaprimers. Mol. Cell Probes 12, 345–348.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • François-Xavier Campbell-Valois
    • 1
  • Stephen W. Michnick
    • 1
  1. 1.Département de BiochimieUniversité de MontréalMontréalCanada

Personalised recommendations