In Vitro Assays of the Functions of Calnexin and Calreticulin, Lectin Chaperones of the Endoplasmic Reticulum

  • Breanna S. Ireland
  • Monika Niggemann
  • David B. Williams
Part of the Methods in Molecular Biology book series (MIMB, volume 347)

Abstract

Calnexin and calreticulin are molecular chaperones of the endoplasmic reticulum (ER) whose folding-promoting functions are directed predominantly toward aspargine-linked glycoproteins. This is a consequence of calnexin and calreticulin being lectins with specificity for the early oligosaccharide (OS)-processing intermediate, Glc1Man9GlcNAc2. In addition, they interact with non-native conformers of glycoprotein polypeptide chains to prevent aggregation and recruit the thiol oxidoreductase ERp57 to catalyze glycoprotein disulfide formation/isomerization. In vitro assays of these functions have contributed greatly to our understanding of how calnexin and calreticulin promote glycoprotein folding. This chapter describes the isolation of Glc1Man9GlcNAc2 OS, as well as the assay used to measure OS binding. Furthermore, details are provided of assays that detect ERp57 binding by calnexin and calreticulin, as well as the abilities of these chaperones to suppress the aggregation of non-native protein substrates.

Key Words

Aggregation calnexin calreticulin endoplasmic reticulum ERp57 glycoprotein folding lectin molecular chaperone oligosaccharide 

References

  1. 1.
    Vassilakos, A., Cohen-Doyle, M. F., Peterson, P. A., Jackson, M. R., and Williams, D. B. (1996) The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 15, 1495–1506.PubMedGoogle Scholar
  2. 2.
    Danilczyk, U. G., Cohen-Doyle, M. F., and Williams, D. B. (2000) Functional relationship between calreticulin, calnexin, and the endoplasmic reticulum luminal domain of calnexin. J. Biol. Chem. 275, 13,089–13,097.CrossRefPubMedGoogle Scholar
  3. 3.
    Gao, B., Adhikari, R., Howarth, M., et al. (2002) Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 16, 99–109.CrossRefPubMedGoogle Scholar
  4. 4.
    Parodi, A. J. (2000) Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem. J. 348, 1–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Leach, M. R. and Williams, D. B. (2003) Calnexin and calreticulin, molecular chaperones of the endoplasmic reticulum. In Calreticulin, 2nd ed. (Eggleton, P. and Michalak, M., eds.), Landes Bioscience, Georgetown, TX, pp. 49–62.Google Scholar
  6. 6.
    Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A., and Williams, D. B. (1994) Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263, 384–387.CrossRefPubMedGoogle Scholar
  7. 7.
    Rajagopalan, S. and Brenner, M. B. (1994) Calnexin retains unassembled major histocompatibility complex class I free heavy chains in the endoplasmic reticulum. J. Exp. Med. 180, 407–412.CrossRefPubMedGoogle Scholar
  8. 8.
    Ou, W. J., Cameron, P. H., Thomas, D. Y., and Bergeron, J. J. (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364, 771–776.CrossRefPubMedGoogle Scholar
  9. 9.
    Hammond, C., Braakman, I., and Helenius, A. (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91, 913–917.CrossRefPubMedGoogle Scholar
  10. 10.
    Ware, F. E., Vassilakos, A., Peterson, P. A., Jackson, M. R., Lehrman, M. A., and Williams, D. B. (1995) The molecular chaperone calnexin binds Glc1Man9 GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270, 4697–4704.CrossRefPubMedGoogle Scholar
  11. 11.
    Spiro, R. G., Zhu, Q., Bhoyroo, V., and Soling, H. D. (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J. Biol. Chem. 271, 11,588–11,594.CrossRefPubMedGoogle Scholar
  12. 12.
    Vassilakos, A., Michalak, M., Lehrman, M. A., and Williams, D. B. (1998) Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37, 3480–3490.CrossRefPubMedGoogle Scholar
  13. 13.
    Oliver, J. D., Roderick, H. L., Llewellyn, D. H., and High, S. (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell 10, 2573–2582.PubMedGoogle Scholar
  14. 14.
    Zapun, A., Darby, N. J., Tessier, D. C., Michalak, M., Bergeron, J. J., and Thomas, D. Y. (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J. Biol. Chem. 273, 6009–6012.CrossRefPubMedGoogle Scholar
  15. 15.
    Hebert, D. N., Foellmer, B., and Helenius, A. (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433.CrossRefPubMedGoogle Scholar
  16. 16.
    Ihara, Y., Cohen-Doyle, M. F., Saito, Y., and Williams, D. B. (1999) Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol. Cell 4, 331–341.CrossRefPubMedGoogle Scholar
  17. 17.
    Saito, Y., Ihara, Y., Leach, M. R., Cohen-Doyle, M. F., and Williams, D. B. (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J. 18, 6718–6729.CrossRefPubMedGoogle Scholar
  18. 18.
    Stronge, V. S., Saito, Y., Ihara, Y., and Williams, D. B. (2001) Relationship between calnexin and BiP in suppressing aggregation and promoting refolding of protein and glycoprotein substrates. J. Biol. Chem. 276, 39,779–39,787.CrossRefPubMedGoogle Scholar
  19. 19.
    Molinari, M. and Helenius, A. (1999) Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402, 90–93.CrossRefPubMedGoogle Scholar
  20. 20.
    Sousa, M. and Parodi, A. J. (1995) The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc-glycoprotein glucosyltransferase. EMBO J. 14, 4196–4203.PubMedGoogle Scholar
  21. 21.
    Wada, I., Rindress, D., Cameron, P. H., et al. (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266, 19,599–19,610.PubMedGoogle Scholar
  22. 22.
    Schrag, J. D., Bergeron, J. J., Li, Y., et al. (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell 8, 633–644.CrossRefPubMedGoogle Scholar
  23. 23.
    Baksh, S. and Michalak, M. (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J. Biol. Chem. 266, 21,458–21,465.PubMedGoogle Scholar
  24. 24.
    Ellgaard, L., Riek, R., Herrmann, T., et al. (2001) NMR structure of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 98, 3133–3138.CrossRefPubMedGoogle Scholar
  25. 25.
    Frickel, E. M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K., and Ellgaard, L. (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA 99, 1954–1959.CrossRefPubMedGoogle Scholar
  26. 26.
    Leach, M. R., Cohen-Doyle, M. F., Thomas, D. Y., and Williams, D. B. (2002) Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J. Biol. Chem. 277, 29,686–29,697.CrossRefPubMedGoogle Scholar
  27. 27.
    Leach, M. R. and Williams, D. B. (2004) Lectin-deficient calnexin is capable of binding class I histocompatibility molecules in vivo and preventing their degradation. J. Biol. Chem. 279, 9072–9079.CrossRefPubMedGoogle Scholar
  28. 28.
    Ou, W. J., Bergeron, J. J., Li, Y., Kang, C. Y., and Thomas, D. Y. (1995) Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+. J. Biol. Chem. 270, 18,051–18,059.CrossRefPubMedGoogle Scholar
  29. 29.
    Bouvier, M. and Stafford, W. F. (2000) Probing the three-dimensional structure of human calreticulin. Biochemistry 39, 14,950–14,959.CrossRefPubMedGoogle Scholar
  30. 30.
    Kapoor, M., Srinivas, H., Kandiah, E., et al. (2003) Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. J. Biol. Chem. 278, 6194–6200.CrossRefPubMedGoogle Scholar
  31. 31.
    Runge, K. W. and Robbins, P. W. (1986) A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. J. Biol. Chem. 261, 15,582–15,590.PubMedGoogle Scholar
  32. 32.
    Mancino, L., Rizvi, S. M., Lapinski, P. E., and Raghavan, M. (2002) Calreticulin recognizes misfolded HLA-A2 heavy chains. Proc. Natl. Acad. Sci. USA 99, 5931–5936.CrossRefPubMedGoogle Scholar
  33. 33.
    Buchner, J., Schmidt, M., Fuchs, M., et al. (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591.CrossRefPubMedGoogle Scholar
  34. 34.
    Jakob, U., Scheibel, T., Bose, S., Reinstein, J., and Buchner, J. (1996) Assessment of the ATP binding properties of Hsp90. J. Biol. Chem. 271, 10,035–10,041.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee, G. J., Roseman, A. M., Saibil, H. R., and Vierling, E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659–671.CrossRefPubMedGoogle Scholar
  36. 36.
    Ohta, M., Hamako, J., Yamamoto, S., et al. (1991) Structures of asparagine-linked oligosaccharides from hen egg-yolk antibody (IgY). Occurrence of unusual glucosylated oligo-mannose type oligosaccharides in a mature glycoprotein. Glycoconj. J. 8, 400–413.CrossRefPubMedGoogle Scholar
  37. 37.
    Kimura, Y., Hess, D., and Sturm, A. (1999) The N-glycans of jack bean alpha-mannosidase. Structure, topology and function. Eur. J. Biochem. 264, 168–175.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Breanna S. Ireland
    • 1
  • Monika Niggemann
    • 2
  • David B. Williams
    • 1
    • 2
  1. 1.Department of ImmunologyUniversity of TorontoTorontoCanada
  2. 2.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations