Protein Arrays

A Versatile Toolbox for Target Identification and Monitoring of Patient Immune Responses
  • Lina Cekaite
  • Eivind Hovig
  • Mouldy Sioud
Part of the Methods in Molecular Biology™ book series (MIMB, volume 360)


Functional proteomics is a promising technique for the rational identification of novel therapeutic targets and biological markers. The studies of protein-protein interactions have been gained from the development of high-throughput technologies such as the yeast two-hybrid system, protein arrays, phage display, and systematic analysis of interaction maps for the prediction of protein functions. Because antibodies are used extensively as diagnostic and clinical tools, the characterization of their antigen specificity is of prime importance. Indeed, screening protein arrays with sera from patients with either cancer or autoimmune diseases would facilitate the identification of autoantibody signatures that can be used for diagnosis and/or prognosis of patients. The usefulness of multiplexed measurements lies not only in the ability to screen many individual marker candidates but also in evaluating the use of multiple markers in combination. Here, we review the advantage of protein and serum screening of peptides and cDNA repertoires displayed on phages as well as the fabrication of protein microarrays for probing immune responses in patients.

Key Words

Autoimmunity cancer phage display protein microarray 


  1. 1.
    Fields, S. and Song, O.-K. (1989) A novel genetic system to detect protein Â-protein interactions. 340, 245–246.Google Scholar
  2. 2.
    Bartel, P. L., Roecklein, J. A., SenGupta, D., and Fields, S. (1996) A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet. 12, 72–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Uetz, P., Giot, L., Cagney, G., et al. (2000) A comprehensive analysis of proteinprotein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.CrossRefPubMedGoogle Scholar
  4. 4.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574.CrossRefPubMedGoogle Scholar
  5. 5.
    Becker, F., Murthi, K., Smith, C. W., et al. (2004) A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem. Biol. 11, 211–223.PubMedGoogle Scholar
  6. 6.
    Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.CrossRefPubMedGoogle Scholar
  7. 7.
    Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455.CrossRefPubMedGoogle Scholar
  8. 8.
    Sheets, M. D., Amersdorfer, P., Finnern, R., et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.CrossRefPubMedGoogle Scholar
  9. 9.
    Dybwad, A., Lambin, P., Sioud, M., and Zouali, M. (2003) Probing the specificity of human myeloma proteins with a random peptide phage library. Scand. J. Immunol. 57, 583–590.CrossRefPubMedGoogle Scholar
  10. 10.
    Souriau, C. and Hudson, P. J. (2003) Recombinant antibodies for cancer diagnosis and therapy. Expert Opin. Biol. Ther. 3, 305–318.CrossRefPubMedGoogle Scholar
  11. 11.
    Moghaddam, A., Borgen, T., Stacy, J., et al. (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J. Immunol. Methods 280, 139–155.CrossRefPubMedGoogle Scholar
  12. 12.
    Dybwad, A., Forre, O., Kjeldsen-Kragh, J., Natvig, J. B., and Sioud, M. (1993) Identification of new B cell epitopes in the sera of rheumatoid arthritis patients using a random nanopeptide phage library. Eur. J. Immunol. 23, 3189–3193.CrossRefPubMedGoogle Scholar
  13. 13.
    Hansen, M. H., Dybwad, A., Forre, O., and Sioud, M. (2000) Probing antinuclear antibody specificities by peptide phage display libraries. Clin. Exp. Rheumatol. 18, 465–472.PubMedGoogle Scholar
  14. 14.
    Hansen, M. H., Nielsen, H., and Ditzel, H. J. (2001) The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. Proc. Natl. Acad. Sci. USA 98, 12,659–12,664.CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen, M. H., Ostenstad, B., and Sioud, M. (2001) Identification of immunogenic antigens using a phage-displayed cDNA library from an invasive ductal breast carcinoma tumour. Int. J. Oncol. 19, 1303–1309.PubMedGoogle Scholar
  16. 16.
    Hansen, M. H., Ostenstad, B., and Sioud, M. (2001) Antigen-specific IgG antibodies in stage IV long-time survival breast cancer patients. Mol. Med. 7, 230–239.PubMedGoogle Scholar
  17. 17.
    Hansen, M. H., Sode, L. L., Hyldig-Nielsen, J. J., and Engberg, J. (1997) Detection of PNA/DNA hybrid molecules by antibody Fab fragments isolated from a phage display library. J. Immunol. Methods 203, 199–207.CrossRefGoogle Scholar
  18. 18.
    Cekaite, H. L., Myklebost, O., Aldrin, M., et al. (2004) Analysis of the humoral immune response to immunoselected phage-displayed peptides by a microarray-based method. Proteomics 4, 2572–2582.CrossRefPubMedGoogle Scholar
  19. 19.
    Sioud, M., Hansen, M., and Dybwad, A. (2000) Profiling the immune responses in patient sera with peptide and cDNA display libraries. Int. J. Mol. Med. 6, 123–128.PubMedGoogle Scholar
  20. 20.
    Sioud, M. and Hansen, M. H. (2001) Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur. J. Immunol. 31, 716–725.CrossRefPubMedGoogle Scholar
  21. 21.
    Barry, M. A., Dower, W. J., and Johnston, S. A. (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat. Med. 2, 299–305.CrossRefPubMedGoogle Scholar
  22. 22.
    Cagney, G., Uetz, P., and Fields, S. (2000) High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 328, 3–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Cekaite, H. L., Myklebost, O., Aldrin, M., et al. (2004) Analysis of the humoral immune response to immunoselected phage-displayed peptides by a microarray-based method. Proteomics 4, 2572–2582.CrossRefPubMedGoogle Scholar
  24. 24.
    Borrebaeck, C. A., Ekstrom, S., Hager, A. C., Nilsson, J., Laurell, T., and Marko-Varga, G. (2001) Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry. BioTechniques 30, 1126–1130, 1132.PubMedGoogle Scholar
  25. 25.
    Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, RESEARCH0004.Google Scholar
  26. 26.
    Kim, T. E., Park, S. W., Cho, N. Y., et al. (2002) Quantitative measurement of serum allergen-specific IgE on protein chip. Exp. Mol. Med. 34, 152–158.PubMedGoogle Scholar
  27. 27.
    Wingren, C., Steinhauer, C., Ingvarsson, J., Persson, E., Larsson, K., and Borrebaeck, C. A. (2005) Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes. Proteomics 5, 1281–1291.CrossRefPubMedGoogle Scholar
  28. 28.
    Miller, J. C., Zhou, H., Kwekel, J., et al. (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3, 56–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Robinson, W. H., DiGennaro, C., Hueber, W., et al. (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301.CrossRefPubMedGoogle Scholar
  30. 30.
    Quintana, F. J., Hagedorn, P. H., Elizur, G., Merbl, Y., Domany, E., and Cohen, I. R. (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc. Natl. Acad. Sci. USA 101(Suppl. 2), 14,615–14,621.CrossRefPubMedGoogle Scholar
  31. 31.
    Neuman de Vegvar, H. E., Amara, R. R., Steinman, L., Utz, P. J., Robinson, H. L., and Robinson, W. H. (2003) Microarray profiling of antibody responses against simian-human immunodeficiency virus: postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. J. Virol. 77, 11,125–11,138.CrossRefPubMedGoogle Scholar
  32. 32.
    Thomas, O., Joos, M. S., Höpfl, P., et al. (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21, 2641–2650.CrossRefGoogle Scholar
  33. 33.
    Madoz-Gurpide, J., Wang, H., Misek, D. E., Brichory, F., and Hanash, S. M. (2001) Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics 1, 1279–1287.CrossRefPubMedGoogle Scholar
  34. 34.
    Nam, M. J., Madoz-Gurpide, J., Wang, H., et al. (2003) Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics 3, 2108–2115.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhu, H., Klemic, J. F., Chang, S., et al. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101–2105.CrossRefPubMedGoogle Scholar
  37. 37.
    Kersten, B., Feilner, T., Kramer, A., et al. (2003) Generation of Arabidopsis protein chips for antibody and serum screening. Plant Mol. Biol. 52, 999–1010.CrossRefPubMedGoogle Scholar
  38. 38.
    Feilner, T., Hultschig, C., Lee, J., et al. (2005) High-throughput identification of potential Arabidopsis MAP kinases substrates. Mol. Cell Proteomics 4, 1558–1568.CrossRefPubMedGoogle Scholar
  39. 39.
    Walhout, A. J., Sordella, R., Lu, X., et al. (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122.CrossRefPubMedGoogle Scholar
  40. 40.
    Heyman, J. A., Cornthwaite, J., Foncerrada, L., et al. (1999) Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation. Genome Res. 9, 383–392.PubMedGoogle Scholar
  41. 41.
    Bussow, K., Cahill, D., Nietfeld, W., et al. (1998) A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res. 26, 5007–5008.CrossRefPubMedGoogle Scholar
  42. 42.
    Gutjahr, C., Murphy, D., Lueking, A., et al. (2005) Mouse protein arrays from a TH1 cell cDNA library for antibody screening and serum profiling. Genomics 85, 285–296.CrossRefPubMedGoogle Scholar
  43. 43.
    Mintz, P. J., Kim, J., Do, K. A., et al. (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat. Biotechnol. 21, 57–63.CrossRefPubMedGoogle Scholar
  44. 44.
    Vidal, C. I., Mintz, P. J., Lu, K., et al. (2004) An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 23, 8859–8867.CrossRefPubMedGoogle Scholar
  45. 45.
    Ansuini, H., Cicchini, C., Nicosia, A., Tripodi, M., Cortese, R., and Luzzago, A. (2002) Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Nucleic Acids Res. 30, e78.CrossRefPubMedGoogle Scholar
  46. 46.
    Shadidi, M. and Sioud, M. (2002) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 17, 256–258.PubMedGoogle Scholar
  47. 47.
    Arap, W., Kolonin, M. G., Trepel, M., et al. (2002) Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127.CrossRefPubMedGoogle Scholar
  48. 48.
    He, M. and Taussig, M. J. (2003) DiscernArray technology: a cell-free method for the generation of protein arrays from PCR DNA. J. Immunol. Methods 274, 265–270.CrossRefPubMedGoogle Scholar
  49. 49.
    Yuko Kawahashi, N. D., Takashima, H., Tsuda, C., et al. (2003) In vitro protein microarrays for detecting protein-protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics 3, 1236–1243.CrossRefPubMedGoogle Scholar
  50. 50.
    Santini, C., Brennan, D., Mennuni, C., et al. (1998) Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282, 125–135.CrossRefPubMedGoogle Scholar
  51. 51.
    Sternberg, N. and Hoess, R. H. (1995) Display of peptides and proteins on the surface of bacteriophage lambda. Proc. Natl. Acad. Sci. USA 92, 1609–1613.CrossRefPubMedGoogle Scholar
  52. 52.
    Danner, S. and Belasco, J. G. (2001) T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc. Natl. Acad. Sci. USA 98, 12,954–12,959.CrossRefPubMedGoogle Scholar
  53. 53.
    Ren, Z. J., Lewis, G. K., Wingfield, P. T., Locke, E. G., Steven, A. C., and Black, L. W. (1996) Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci. 5, 1833–1843.CrossRefPubMedGoogle Scholar
  54. 54.
    Steinhauer, C., Wingren, C., Hager, A. C., and Borrebaeck, C. A. (2002) Single framework recombinant antibody fragments designed for protein chip applications. BioTechniques Suppl, 38–45.Google Scholar
  55. 55.
    Holt, L. J., Enever, C., de Wildt, R. M., and Tomlinson, I. M. (2000) The use of recombinant antibodies in proteomics. Curr. Opin. Biotechnol. 11, 445–449.CrossRefPubMedGoogle Scholar
  56. 56.
    de Wildt, R. M., Mundy, C. R., Gorick, B. D., and Tomlinson, I. M. (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18, 989–994.CrossRefPubMedGoogle Scholar
  57. 57.
    Poetz, O., Ostendorp, R., Brocks, B., et al. (2005) Protein microarrays for antibody profiling: specificity and affinity determination on a chip. Proteomics 5, 2402–2411.CrossRefPubMedGoogle Scholar
  58. 58.
    Uetz, P. (2002) Two-hybrid arrays. Curr. Opin. Chem. Biol. 6, 57–62.CrossRefPubMedGoogle Scholar
  59. 59.
    Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H., and Walter, G. (1999) Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111.CrossRefPubMedGoogle Scholar
  60. 60.
    Lueking, A., Possling, A., Huber, O., et al. (2003) A nonredundant human protein chip for antibody screening and serum profiling. Mol. Cell Proteomics 2, 1342–1349.CrossRefPubMedGoogle Scholar
  61. 61.
    Sioud, M., Dybwad, A., Jespersen, L., Suleyman, S., Natvig, J. B., and Forre, O. (1994) Characterization of naturally occurring autoantibodies against tumour necrosis factor-alpha (TNF-alpha): in vitro function and precise epitope mapping by phage epitope library. Clin. Exp. Immunol. 98, 520–525.CrossRefPubMedGoogle Scholar
  62. 62.
    Yip, Y. L. and Ward, R. L. (2002) Application of phage display technology to cancer research. Curr. Pharm. Biotechnol. 3, 29–43.CrossRefPubMedGoogle Scholar
  63. 63.
    Portefaix, J. M., Fanutti, C., Granier, C., et al. (2002) Detection of anti-p53 antibodies by ELISA using p53 synthetic or phage-displayed peptides. J. Immunol. Methods 259, 65–75.CrossRefPubMedGoogle Scholar
  64. 64.
    Rodi, D. J., Soares, A. S., and Makowski, L. (2002) Quantitative assessment of peptide sequence diversity in M13 combinatorial peptide phage display libraries. J. Mol. Biol. 322, 1039–1052.CrossRefPubMedGoogle Scholar
  65. 65.
    Lee, K. J., Mao, S., Sun, C., et al. (2002) Phage-display selection of a human single-chain fv antibody highly specific for melanoma and breast cancer cells using a chemoenzymatically synthesized G(M3)-carbohydrate antigen. J. Am. Chem. Soc. 124, 12,439–12,446.CrossRefPubMedGoogle Scholar
  66. 66.
    Huls, G., Heijnen, I. A., Cuomo, E., et al. (1999) Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgA1 monoclonal antibodies. Cancer Res. 59, 5778–5784.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Lina Cekaite
    • 1
  • Eivind Hovig
    • 1
  • Mouldy Sioud
    • 1
  1. 1.Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium HospitalUniversity of OsloOsloNorway

Personalised recommendations