Transgenic Animal Models in Biomedical Research

  • Louis-Marie Houdebine
Part of the Methods in Molecular Biology™ book series (MIMB, volume 360)


Transgenic animals have become a key tool in functional genomics to generate models for human diseases and validate new drugs. Transgenesis includes the addition of foreign genetic information to animals and specific inhibition of endogenous gene expression. Recently, animal models provided novel insight and significantly improved our understanding of the initiation and perpetuation of human diseases. Moreover, they are an invaluable tool for target discovery, validation, and production of therapeutic proteins. However, despite the generation of several transgenic and knockout models, obtaining relevant models still faces several theoretical and technical challenges. Indeed, genes of interest are not always available and gene addition or inactivation sometimes does not allow clear conclusions because of the intrinsic complexity of living organisms or the redundancy of some metabolic pathways. In addition to homologous recombination, endogenous gene expression can be specifically inhibited using several mechanisms such as RNA interference. Here, some animal models are described to illustrate their importance in biomedical research. Moreover, guidelines for generation of these animals are presented.

Key Words

Diseases models pharmaceuticals transgenic animals 



I thank Annie Paglino for her help in the preparation of the manuscript.


  1. 1.
    Brown, S. D. and Balling, R. (2001) Systematic approaches to mouse mutagenesis. Curr. Opin. Genet. Dev. 11, 268–273.PubMedCrossRefGoogle Scholar
  2. 2.
    Houdebine, L. M. (2004) Preparation of recombinant proteins in milk. Methods Mol. Biol. 267, 485–494.PubMedGoogle Scholar
  3. 3.
    Houdebine, L. M. and Weill, B. (1999) The impact of transgenesis and cloning on cell and organ xenotransplantation to humans, in Focus on Biotechnology (Van Brockhoven, A., Shapiro, F., and Anne, J., eds.), Kluwer Academic Publishers, pp. 351–361.Google Scholar
  4. 4.
    Houdebine, L. M. (2002) Transgenesis to improve animal production. Livest. Prod. Sci. 74, 255–268.CrossRefGoogle Scholar
  5. 5.
    Houdebine, L. M. (ed.) (1997) Transgenic Animals. Generation and Use. Harwood Academic Publishers, Amsterdam.Google Scholar
  6. 6.
    Pinkert, C. A. (2002) Transgenic Animal Technology. Academic, Orlando, FL.Google Scholar
  7. 7.
    Schedl, A., Larin, Z., Montoliu, L., et al. (1993) A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res. 21, 4783–4787.PubMedCrossRefGoogle Scholar
  8. 8.
    Hostetler, H. A., Peck, S. L., and Muir, W. M. (2003) High efficiency production of germ-line transgenic Japanese medaka (Oryzias latipes) by electroporation with direct current-shifted radio frequency pulses. Transgenic Res. 12, 413–424.PubMedCrossRefGoogle Scholar
  9. 9.
    Dupuy, A. J., Clark, K., Carlson, C. M., et al. (2002) Mammalian germ-line transgenesis by transposition. Proc. Natl. Acad. Sci. USA 99, 4495–4499.PubMedCrossRefGoogle Scholar
  10. 10.
    Tamura, T., Thibert, C., Royer, C., et al. (1999) Germiline transformation of the silkworm Bombyx mori L. using a piggyBac transposon derived vector. Nat. Biotechnol. 18, 81–84.Google Scholar
  11. 11.
    Mikkelsen, J. G., Yant, S. R., Meuse, L., Huang, Z., Xu, H., and Kay, M. A. (2003) Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol. Ther. 8, 654–665.PubMedCrossRefGoogle Scholar
  12. 12.
    Masuda, K., Yamamoto, S., Endoh, M., and Kaneda, Y. (2004) Transposon-independent increase of transcription by the Sleeping Beauty transposase. Biochem. Biophys. Res. Commun. 317, 796–800.PubMedCrossRefGoogle Scholar
  13. 13.
    Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872.PubMedCrossRefGoogle Scholar
  14. 14.
    Chan, A. W., Chong, K. Y., Martinovich, C., Simerly, C., and Schatten, G. (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291, 309–312.PubMedCrossRefGoogle Scholar
  15. 15.
    McGrew, M. J., Sherman, A., Ellard, F. M., et al. (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep. 5, 728–733.PubMedCrossRefGoogle Scholar
  16. 16.
    Hofmann, A., Kessler, B., Ewerling, S., et al. (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 4, 1054–1060.PubMedCrossRefGoogle Scholar
  17. 17.
    Whitelaw, C. B. A. (2004) Transgenic livestock made easy. Trends Biotechnol. 22, 157–159.PubMedCrossRefGoogle Scholar
  18. 18.
    Hofmann, A., Zakhartchenko, V., Weppert, M., et al. (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol. Reprod. 71, 405–409.PubMedCrossRefGoogle Scholar
  19. 19.
    Fassler, R. (2004) Lentiviral transgene vectors. EMBO Rep. 5, 28–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Pfeifer, A., Hofmann, A., Kessler, B., and Wolf, E. (2004) Response to Whitelaw: Lentiviral transgenesis in livestock. Trends Biotechnol. 22, 159–160.CrossRefGoogle Scholar
  21. 21.
    Wolfgang, M. J., Eisele, S. G., Browne, M. A., et al. (2001) Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc. Natl. Acad. Sci. USA 98, 10,728–10,732.PubMedCrossRefGoogle Scholar
  22. 22.
    Sanchez, O., Toledo, J. R., Rodriguez, M. P., and Castro, F. O. (2004) Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats. J. Biotechnol. 114, 89–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Lipps, H. J., Jenke, A. C., Nehlsen, K., Scinteie, M. F., Stehle, I. M., and Bode, J. (2003) Chromosome-based vectors for gene therapy. Gene 304, 23–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Lindenbaum, M., Perkins, E., Csonka, E., et al. (2004) A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy. Nucleic Acids Res. 32, e172.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuroiwa, Y., Kasinathan, P., Choi, Y. J., et al. (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat. Biotechnol. 20, 889–894.PubMedCrossRefGoogle Scholar
  26. 26.
    Lavitrano, M., Bacci, M. L., Forni, M., et al. (2002) Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc. Natl. Acad. Sci. USA 99, 14,230–14,235.PubMedCrossRefGoogle Scholar
  27. 27.
    Lavitrano, M., Forni, M., Bacci, M. L., et al. (2003) Sperm mediated gene transfer in pig: Selection of donor boars and optimization of DNA uptake. Mol. Reprod. Dev. 64, 284–291.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, H. J., Lin, A. X., Zhang, Z. C., and Chen, Y. F. (2001) Expression of porcine growth hormone gene in transgenic rabbits as reported by green fluorescent protein. Anim. Biotechnol. 12, 101–110.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang, K. (2003) Improving sperm mediated transgenesis: linker based sperm gene transfer: application to multiple species with a high success rate, in Proceedings of the Transgenic Animal Research Conference IV, Tahoe City, CA.Google Scholar
  30. 30.
    Marsh-Armstrong, N., Huang, H., Berry, D. L., and Brown, D. D. (1999) Germline transmission of transgenes in Xenopus laevis. Proc. Natl. Acad. Sci. USA 96, 14,389–14,393.PubMedCrossRefGoogle Scholar
  31. 31.
    Kato, M., Ishikawa, A., Kaneko, R., Yagi, T., Hochi, S., and Hirabayashi, M. (2004) Production of transgenic rats by ooplasmic injection of spermatogenic cells exposed to exogenous DNA: a preli Carl A. Pinkert Ed. (Ed.)minary study. Mol. Reprod. Dev. 69, 153–158.PubMedCrossRefGoogle Scholar
  32. 32.
    Moreira, P. N., Giraldo, P., Cozar, P., et al. (2004) Efficient generation of transgenic mice with intact yeast artificial chromosomes by intracytoplasmic sperm injection. Biol. Reprod. 71, 1943–1947.PubMedCrossRefGoogle Scholar
  33. 33.
    Chan, A. W., Luetjens, C. M., Dominko, T., et al. (2000) Transgene ICSI reviewed: Foreign DNA transmission by intracytoplasmic sperm injection in rhesus monkey. Mol. Reprod. Dev. 56, 325–328.PubMedCrossRefGoogle Scholar
  34. 34.
    Thermes, V., Grabher, C., Ristoratore, F., et al. (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91–98.PubMedCrossRefGoogle Scholar
  35. 35.
    Chang, K., Qian, J., Jiang, M., et al. (2002) Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnol. 2, 5.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, K. (2003) Improving sperm mediated transgenesis: linker based sperm gene transfer: application to multiple species with a high success rate, in Proceedings of the Transgenic Animal Research Conference IV, Tahoe City, CA.Google Scholar
  37. 37.
    Celebi, C., Auvray, P., Benvegnu, T., Plusquellec, D., Jegou, B., and Guillaudeux, T. (2002) Transient transmission of a transgene in mouse offspring following in vivo transfection of male germ cells. Mol. Reprod. Dev. 62, 477–482.PubMedCrossRefGoogle Scholar
  38. 38.
    Honaramooz, A., Behboodi, E., Blash, S., Megee, S. O., and Dobrinski, I. (2003) Germ cell transplantation in goats. Mol. Reprod. Dev. 64, 422–428.PubMedCrossRefGoogle Scholar
  39. 39.
    Readhead, C., Jarvis, S., Morgan, D., and Winston, R. (2003) Male germ cells: manipulating their genome, in Proceedings of the Transgenic Animal Research Conference IV, Tahoe City, CA.Google Scholar
  40. 40.
    Oatley, J. M., de Avila, D. M., Reeves, J. J., and McLean, D. J. (2004) Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue. Biol. Reprod. 71, 494–501.PubMedCrossRefGoogle Scholar
  41. 41.
    Schnieke, A. E., Kind, A. J., Ritchie, W. A., et al. (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.PubMedCrossRefGoogle Scholar
  42. 42.
    Cibelli, J. B., Stice, S. L., Golueke, P. J., et al. (1998) Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol. 16, 642–646.PubMedCrossRefGoogle Scholar
  43. 43.
    Capecchi, M. R. (1989) Altering the genome by homologous recombination. Science 244, 1288–1292.PubMedCrossRefGoogle Scholar
  44. 44.
    Cohen-Tannoudji, M., Robine, S., Choulika, A., et al. (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell Biol. 18, 1444–1448.PubMedGoogle Scholar
  45. 45.
    Epinat, J. C., Arnould, S., Chames, P., et al. (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962.PubMedCrossRefGoogle Scholar
  46. 46.
    Farhadi, H. F., Lepage, P., Forghani, R., et al. (2003) A combinatorial network of evolutionarily conserved myelin basic protein regulatory sequences confers distinct glial-specific phenotypes. J. Neurosci. 23, 10,214–10,223.PubMedGoogle Scholar
  47. 47.
    Bode, J., Schlake, T., Iber, M., et al. (2000) The transgeneticist’s toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol. Chem. 381, 801–813.PubMedCrossRefGoogle Scholar
  48. 48.
    Baer, A. and Bode, J. (2001) Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr. Opi. Biotechnol. 12, 473–480.CrossRefGoogle Scholar
  49. 49.
    Houdebine, L. M. (2003) Animal Trangenesis and Cloning. Wiley, Chichester, U.K.CrossRefGoogle Scholar
  50. 50.
    West, A. G., Gaszner, M., and Felsenfeld, G. (2002) Insulators; many functions, many mechanisms. Genes Dev. 16, 271–288.PubMedCrossRefGoogle Scholar
  51. 51.
    Bell, A. C., West, A. G., and Felsenfeld, G. (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291, 447–450.PubMedCrossRefGoogle Scholar
  52. 52.
    De Laat, W. and Grosveld, F. (2003) Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11, 447–459.PubMedCrossRefGoogle Scholar
  53. 53.
    Taboit-Dameron, F., Malassagne, B., Viglietta, C., et al. (1999) Association of the 5′HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res. 8, 223–235.PubMedCrossRefGoogle Scholar
  54. 54.
    Rival-Gervier, S., Viglietta, C., Maeder, C., Attal, J., and Houdebine, L. M. (2002) Position-independent and tissue-specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice. Mol. Reprod. Dev. 63, 161–167.PubMedCrossRefGoogle Scholar
  55. 55.
    Giraldo, P., Rival-Gervier, S., Houdebine, L. M., and Montoliu, L. (2003) The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res. 12, 751–755.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang, Y., Muyrers, J. P., Testa, G., and Stewart, A. F. (2000) DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317.PubMedCrossRefGoogle Scholar
  57. 57.
    Houdebine, L., Attal, J., and Vilotte, J. L. (2002) Vector design for transgene expression, in Transgenic Animal Technology, 2nd ed., Pinkert, C. A. (ed.), pp. 419–458.Google Scholar
  58. 58.
    Cohen-Tannoudji, M., Vandormael-Pournin, S., Drezen, J., Mercier, P., Babinet, C., and Morello, D. (2000) lacZ sequences prevent regulated expression of housekeeping genes. Mech. Dev. 90, 29–39.PubMedCrossRefGoogle Scholar
  59. 59.
    Whitelaw, E. and Martin, D. I. (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365.PubMedCrossRefGoogle Scholar
  60. 60.
    Kwaks, T. H., Sewalt, R. G., van Blokland, R., et al. (2005) Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells. J. Biotechnol. 115, 35–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Houdebine, L. M. and Attal, J. (1999) Internal ribosome entry sites (IRESs): reality and use. Transgenic Res. 8, 157–177.PubMedCrossRefGoogle Scholar
  62. 62.
    Mattick, J. S. and Makunin, I. V. (2005) Small regulatory RNAs in mammals. Hum. Mol. Genet. 14 (Special no. R), 121–132.CrossRefGoogle Scholar
  63. 63.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  64. 64.
    Novina, C. D. and Sharp, P. A. (2004) The RNAi revolution. Nature 430, 161–164.PubMedCrossRefGoogle Scholar
  65. 65.
    Unwalla, H. J., Li, M. J., Kim, J. D., Li, et al. (2004) Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA. Nat. Biotechnol. 22, 1573–1578.PubMedCrossRefGoogle Scholar
  66. 66.
    Shinagawa, T. and Ishii, S. (2003) Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340–1345.PubMedCrossRefGoogle Scholar
  67. 67.
    Xia, H., Mao, Q., Paulson, H. L., and Davidson, B. L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20, 1006–1010.PubMedCrossRefGoogle Scholar
  68. 68.
    Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932.PubMedCrossRefGoogle Scholar
  69. 69.
    Sen, G., Wehrman, T. S., Myers, J. W., and Blau, H. M. (2004) Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat. Genet. 36, 183–189.PubMedCrossRefGoogle Scholar
  70. 70.
    Shirane, D., Sugao, K., Namiki, S., Tanabe, M., Iino, M., and Hirose, K. (2004) Enzymatic production of RNAi libraries from cDNAs. Nat. Genet. 36, 190–196.PubMedCrossRefGoogle Scholar
  71. 71.
    Hohjoh, H. (2004) Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett. 557, 193–198.PubMedCrossRefGoogle Scholar
  72. 72.
    Mittal, V. (2004) Improving the efficiency of RNA interference in mammals. Nat. Rev. Genet. 5, 355–365.PubMedCrossRefGoogle Scholar
  73. 73.
    Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.PubMedCrossRefGoogle Scholar
  74. 74.
    Ui-Tei, K., Naito, Y., Takahashi, F., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.PubMedCrossRefGoogle Scholar
  75. 75.
    Yoshinari, K., Miyagishi, M., and Taira, K. (2004) Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res. 32, 691–699.PubMedCrossRefGoogle Scholar
  76. 76.
    Williams, B. R. (2005) Dicing with siRNA. Nat. Biotechnol. 23, 181–182.PubMedCrossRefGoogle Scholar
  77. 77.
    Chalk, A. M., Wahlestedt, C., and Sonnhammer, E. L. (2004) Improved and automated prediction of effective siRNA. Biochem. Biophys. Res. Commun 319, 264–274.PubMedCrossRefGoogle Scholar
  78. 78.
    Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.PubMedCrossRefGoogle Scholar
  79. 79.
    Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.PubMedCrossRefGoogle Scholar
  80. 80.
    Kim, D. H., Behlke, M. A., Rose, S. D., Chang, M. S., Choi, S., and Rossi, J. J. (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226.PubMedCrossRefGoogle Scholar
  81. 81.
    Siolas, D., Lerner, C., Burchard, J., et al. (2005) Synthetic sh RNA as potent RNAi triggers. Nat. Biotechnol. 23, 227–231.PubMedCrossRefGoogle Scholar
  82. 82.
    Luo, K. Q. and Chang, D. C. (2004) The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem. Biophys. Res. Commun. 318, 303–310.PubMedCrossRefGoogle Scholar
  83. 83.
    Snove, O., Jr., and Holen, T. (2004) Many commonly used siRNAs risk off-target activity. Biochem. Biophys. Res. Commun. 319, 256–263.PubMedCrossRefGoogle Scholar
  84. 84.
    Judge, A. D., Sood, V., Shaw, J. R., Fang, D., McClintock, K., and Maclachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462.PubMedCrossRefGoogle Scholar
  85. 85.
    Yelin, R., Dahary, D., Sorek, R., et al. (2003) Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21, 379–386.PubMedCrossRefGoogle Scholar
  86. 86.
    Carmichael, G. G. (2003) Antisense starts making more sense. Nat. Biotechnol. 21, 371–372.PubMedCrossRefGoogle Scholar
  87. 87.
    Ying, S. Y. and Lin, S. L. (2004) Intron-derived microRNAs—fine tuning of gene functions. Gene 342, 25–28.PubMedCrossRefGoogle Scholar
  88. 88.
    Ying, S. Y. and Lin, S. L. (2005) Intronic microRNAs. Biochem. Biophys. Res. Commun 326, 515–520.PubMedCrossRefGoogle Scholar
  89. 89.
    Kawasaki, H. and Taira, K. (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211–217.PubMedCrossRefGoogle Scholar
  90. 90.
    Morris, K. V., Chan, S. W., Jacobsen, S. E., and Looney, D. J. (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292.PubMedCrossRefGoogle Scholar
  91. 91.
    Zeng, Y., Yi, R., and Cullen, B. R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784.PubMedCrossRefGoogle Scholar
  92. 92.
    He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531.PubMedCrossRefGoogle Scholar
  93. 93.
    Xie, X., Lu, J., Kulbokas, E. J., et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060.PubMedCrossRefGoogle Scholar
  95. 95.
    Zeng, Y. and Cullen, B. R. (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123.PubMedCrossRefGoogle Scholar
  96. 96.
    Ecclestin, A. and Eggleston, A. K. (2004) RNA interference. Nature 431, 337–378.CrossRefGoogle Scholar
  97. 97.
    Clayton, J. (2004) RNA interference: the silent treatment. Nature 431, 599–605.PubMedCrossRefGoogle Scholar
  98. 98.
    Müller, M. (2000) Increasing disease resistance in transgenic domestic, in Molecular Farming (Toutant, J. P. and Balazs, E., eds.), INRA Editions, Paris, pp. 87–98.Google Scholar
  99. 99.
    Jones, S. D. and Marasco, W. A. (1997) Intracellular antibodies (intrabodies): potential applications in transgenic animal research and engineered resistance to pathogens, in Transgenic Animal Generation and Use (Houdebine, L. M., ed.), Harwood Academic Publishers, Amsterdam, pp. 501–506.Google Scholar
  100. 100.
    Chang, P. Y., Benecke, H., Le Marchand-Brustel, Y., Lawitts, J., and Moller, D. E. (1994) Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J. Biol. Chem. 269, 16,034–16,040.PubMedGoogle Scholar
  101. 101.
    Ono, E., Amagai, K., Taharaguchi, S., et al. (2004) Transgenic mice expressing a soluble form of porcine nectin-1/herpesvirus entry mediator C as a model for pseudorabies-resistant livestock. Proc. Natl. Acad. Sci. USA 101, 16,150–16,155.PubMedCrossRefGoogle Scholar
  102. 102.
    Chen, Y. T., Levasseur, R., Vaishnav, S., Karsenty, G., and Bradley, A. (2004) Bigenic Cre/loxP, puDeltatk conditional genetic ablation. Nucleic Acids Res. 32, e161.PubMedCrossRefGoogle Scholar
  103. 103.
    Saito, M., Iwawaki, T., Taya, C., et al. (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750.PubMedCrossRefGoogle Scholar
  104. 104.
    Jiang, W., Zhou, L., Breyer, B., et al. (2001) Tetracycline-regulated gene expression mediated by a novel chimeric repressor that recruits histone deacetylases in mammalian cells. J. Biol. Chem. 276, 45,168–45,174.PubMedCrossRefGoogle Scholar
  105. 105.
    Weber, W. and Fussenegger, M. (2004) Approaches for trigger-inducible viral transgene regulation in gene-based tissue engineering. Curr. Opin. Biotechnol. 15, 383–391.PubMedCrossRefGoogle Scholar
  106. 106.
    Boutonnet, C., Boijoux, O., Bernat, S., et al. (2004) Pharmacological-based translational induction of transgene expression in mammalian cells. EMBO Rep. 5, 721–727.PubMedCrossRefGoogle Scholar
  107. 107.
    Cecconi, F. and Meyer, B. I. (2000) Gene trap: a way to identify novel genes and unravel their biological function. FEBS Lett. 480, 63–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Jackson, I. J. (2001) Mouse mutagenesis on target. Nat. Genet. 28, 198–200.PubMedCrossRefGoogle Scholar
  109. 109.
    Medico, E., Gambarotta, G., Gentile, A., Comoglio, P. M., and Soriano, P. (2001) A gene trap vector system for identifying transcriptionally responsive genes. Nat. Biotechnol. 19, 579–582.PubMedCrossRefGoogle Scholar
  110. 110.
    Mitchell, K. J., Pinson, K. I., Kelly, O. G., et al. (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat. Genet. 28, 241–249.PubMedCrossRefGoogle Scholar
  111. 111.
    Goodwin, N. C., Ishida, Y., Hartford, S., et al. (2001) DelBank: a mouse ES-cell resource for generating deletions. Nat. Genet. 28, 310–311.PubMedCrossRefGoogle Scholar
  112. 112.
    Houdebine, L. M. (2002) Antibody manufacture in transgenic animals and comparisons with other systems. Curr. Opin. Biotechnol. 13, 625–629.PubMedCrossRefGoogle Scholar
  113. 113.
    Houdebine, L. M. and Weill, B. (1999) The impact of transgenesis and cloning on cell and organ xenotransplantation to humans, in Focus on Biotechnology (Van Brockhoven, A., Shapiro, F., and Anne, J., eds.), Kluwer Academic Publishers, pp. 351–361.Google Scholar
  114. 114.
    Lai, L., Kolber-Simonds, D., Park, K. W., et al. (2002) Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092.PubMedCrossRefGoogle Scholar
  115. 115.
    Dai, Y., Vaught, T. D., Boone, J., et al. (2002) Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255.PubMedCrossRefGoogle Scholar
  116. 116.
    Switzer, W. M., Michler, R. E., Shanmugam, V., et al. (2001) Lack of cross-species transmission of porcine endogenous retrovirus infection to nonhuman primate recipients of porcine cells, tissues, or organs. Transplantation 71, 959–965.PubMedCrossRefGoogle Scholar
  117. 117.
    Oldmixon, B. A., Wood, J. C., Ericsson, T. A., et al. (2002) Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J. Virol. 76, 3045–3048.PubMedCrossRefGoogle Scholar
  118. 118.
    Chan, F., Bradley, A., Wensel, T. G., and Wilson, J. H. (2004) Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy. Proc. Natl. Acad. Sci. USA 101, 9109–9114.PubMedCrossRefGoogle Scholar
  119. 119.
    Boulanger, L., Mallet, S., Chense, P., et al. (2002) Advantages and limits of using the ubiquitous expressed EF1alpha promoter for transgenesis in vivo and in vitro in rabbit. Transgenic Res. 11, 88.Google Scholar
  120. 119a.
    al Gubarg, K. and Houdebine, L. M. In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibered confocal fluorescience microscopy. Eur. J. Cell Biol., in press.Google Scholar
  121. 120.
    Devgan, V., Rao, M. R., and Seshagiri, P. B. (2004) Impact of embryonic expression of enhanced green fluorescent protein on early mouse development. Biochem. Biophys. Res. Commun. 313, 1030–1036.PubMedCrossRefGoogle Scholar
  122. 121.
    Pailhoux, E., Vigier, B., Chaffaux, S., et al. (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat. Genet. 29, 453–458.PubMedCrossRefGoogle Scholar
  123. 122.
    Vaiman, D. (2003) Sexy transgenes: the impact of gene transfer and gene inactivation technologies on the understanding of mammalian sex determination. Transgenic Res. 12, 255–269.PubMedCrossRefGoogle Scholar
  124. 123.
    Shillingford, J. M. and Henneighausen, L. (2001) Experimental mouse genetics-answering fundamental questions about mamary gland biology. Trends Endocrinol Metab 12, 402–408.PubMedCrossRefGoogle Scholar
  125. 124.
    Kong, J. and Xu, Z. (2000) Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci Lett. 281, 72–74.PubMedCrossRefGoogle Scholar
  126. 125.
    Moll, J., Barzaghi, P., Lin, S., et al. (2001) An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 413, 302–307.PubMedCrossRefGoogle Scholar
  127. 126.
    Esler, W. P. and Wolfe, M. S. (2001) A portrait of Alzheimer secretases—new features and familiar faces. Science 293, 1449–1454.PubMedCrossRefGoogle Scholar
  128. 127.
    Lewis, J., Dickson, D. W., Lin, W. L., et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.PubMedCrossRefGoogle Scholar
  129. 128.
    Chapman, P. F., Falinska, A. M., Knevett, S. G., and Ramsay, M. F. (2001) Genes, models and Alzheimer’s disease. Trends Genet. 17, 254–261.PubMedCrossRefGoogle Scholar
  130. 129.
    Moore, R. C. and Melton, D. W. (1997) Transgenic analysis of prion diseases. Mol. Hum. Reprod. 3, 529–544.PubMedCrossRefGoogle Scholar
  131. 130.
    Prusiner, S. B., Scott, M. R., DeArmond, S. J., and Cohen, F. E. (1998) Prion protein biology. Cell 93, 337–348.PubMedCrossRefGoogle Scholar
  132. 131.
    Scott, M. R., Will, R., Ironside, J., et al. (1999) Compelling transgenetic evidence for transmission of bovine spongiform encephalopathy prions to humans. Proc. Natl. Acad. Sci. USA 96, 15,137–15,142.PubMedCrossRefGoogle Scholar
  133. 132.
    Raeber, A. J., Race, R. E., Brandner, S., et al. (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16, 6057–6065.PubMedCrossRefGoogle Scholar
  134. 133.
    Scott, M. R., Safar, J., Telling, G., et al. (1997) Identification of a prion protein epitope modulating transmission of bovine spongiform encephalopathy prions to transgenic mice. Proc. Natl. Acad. Sci. USA 94, 14,279–14,284.PubMedCrossRefGoogle Scholar
  135. 134.
    Manolakou, K., Beaton, J., McConnell, I., et al. (2001) Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc. Natl. Acad. Sci. USA 98, 7402–7407.PubMedCrossRefGoogle Scholar
  136. 135.
    Vilette, D., Andreoletti, O., Archer, F., et al. (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc. Natl. Acad. Sci. USA 98, 4055–4059.PubMedCrossRefGoogle Scholar
  137. 136.
    Betarbet, R., Sherer, T. B., and Greenamyre, J. T. (2002) Animal models of Parkinson’s disease. Bioessays 24, 308–318.PubMedCrossRefGoogle Scholar
  138. 137.
    Rubinsztein, D. C. (2002) Lessons from animal models of Huntington’s disease. Trends Genet. 18, 202–209.PubMedCrossRefGoogle Scholar
  139. 138.
    Ranger, A. M., Malynn, B. A., and Korsmeyer, S. J. (2001) Mouse models of cell death. Nat. Genet. 28, 113–118.PubMedCrossRefGoogle Scholar
  140. 139.
    De Boer, J., Andressoo, J. O., De Wit, J., et al. (2002) Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279.PubMedCrossRefGoogle Scholar
  141. 140.
    Miller, M. W. and Rubin, E. M. (1997) Transgenic animals in atherosclerosis research, in Transgenic Animal and Generation and Use (L. M. Houdebine, ed.), Harwood Academic Publishers, Amsterdam, pp. 445–448.Google Scholar
  142. 141.
    Fan, J. and Watanabe, T. (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol. Ther. 99, 261–282.PubMedCrossRefGoogle Scholar
  143. 142.
    Siegel, P. M., Hardy, W. R., and Muller, W. J. (2000) Mammary gland neoplasia: insights from transgenic mouse models. Bioessays 22, 554–563.PubMedCrossRefGoogle Scholar
  144. 143.
    Bartek, J. and Lukas, J. (2001) Are all cancer genes equal? Nature 411, 1001–1002.PubMedCrossRefGoogle Scholar
  145. 144.
    Yu, Q., Geng, Y., and Sicinski, P. (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021.PubMedCrossRefGoogle Scholar
  146. 145.
    Schwertfeger, K. L., Richert, M. M., and Anderson, S. M. (2001) Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol. 15, 867–881.PubMedCrossRefGoogle Scholar
  147. 146.
    Berns, A. (2001) Cancer. Improved mouse models. Nature 410, 1043–1044.PubMedCrossRefGoogle Scholar
  148. 147.
    Johnson, L., Mercer, K., Greenbaum, D., et al. (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116.PubMedCrossRefGoogle Scholar
  149. 148.
    Lecuit, M., Vandormael-Pournin, S., Lefort, J., et al. (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725.PubMedCrossRefGoogle Scholar
  150. 149.
    Oldstone, M. B., Lewicki, H., Thomas, D., et al. (1999) Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 98, 629–640.PubMedCrossRefGoogle Scholar
  151. 150.
    Ren, R. B., Costantini, F., Gorgacz, E. J., Lee, J. J., and Racaniello, V. R. (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63, 353–362.PubMedCrossRefGoogle Scholar
  152. 151.
    Fausto, N. (2001) A mouse model for hepatitis C virus infection? Nat. Med. 7, 890–891.PubMedCrossRefGoogle Scholar
  153. 152.
    Dunn, C. S., Mehtali, M., Houdebine, L. M., Gut, J. P., Kirn, A., and Aubertin, A. M. (1995) Human immunodeficiency virus type 1 infection of human CD4-transgenic rabbits. J. Gene. Virol. 76, 1327–1336.CrossRefGoogle Scholar
  154. 153.
    Cohen, J. (2001) Building a small-animal model for AIDS, block by block. Science 293, 1034–1036.PubMedCrossRefGoogle Scholar
  155. 154.
    Reid, W., Sadowska, M., Denaro, F., et al. (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc. Natl. Acad. Sci. USA 98, 9271–9276.PubMedCrossRefGoogle Scholar
  156. 155.
    Carvallo, G., Canard, G., and Tucker, D. (1997) Standardization of transgenic lines: from founder to an established animal model, in Transgenic Animal Generation and Use (Houdebine, L. M., ed.), Harwood Academic Publishers, Amsterdam, pp. 403–410.Google Scholar
  157. 156.
    Auerbach, A. B., Norinsky, R., Ho, W., et al. (2003) Strain-dependent differences in the efficiency of transgenic mouse production. Transgenic Res. 12, 59–69.PubMedCrossRefGoogle Scholar
  158. 157.
    Abbott, A. (2004) Geneticists prepare for deluge of mutant mice. Nature 432, 541.PubMedCrossRefGoogle Scholar
  159. 158.
    Valenzuela, D. M., Murphy, A. J., Frendewey, D., et al. (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659.PubMedCrossRefGoogle Scholar
  160. 159.
    Kuroiwa, Y., Kasinathan, P., Matsushita, H., et al. (2004) Sequential targeting of the genes encoding immunoglobulin-micro and prion protein in cattle. Nat. Genet. 36, 671–672.CrossRefGoogle Scholar
  161. 160.
    Zhou, Q., Renard, J. P., Le Friec, G., et al. (2003) Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179.PubMedCrossRefGoogle Scholar
  162. 161.
    Chesne, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20, 366–369.PubMedCrossRefGoogle Scholar
  163. 162.
    Kwaks, T. H., Barnett, P., Hemrika, W., et al. (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat. Biotechnol. 21, 553–558.PubMedCrossRefGoogle Scholar
  164. 163.
    Szathmary, E., Jordan, F., and Pal, C. (2001) Molecular biology and evolution. Can genes explain biological complexity? Science 292, 1315–1316.PubMedCrossRefGoogle Scholar
  165. 164.
    Liggett, S. B. (2004) Genetically modified mouse models for pharmacogenomic research. Nat. Rev. Genet. 5, 657–663.PubMedCrossRefGoogle Scholar
  166. 165.
    Lee, D. and Threadgill, D. W. (2004) Investigating gene function using mouse models. Curr. Opin. Genet. Dev. 14, 246–252.PubMedCrossRefGoogle Scholar
  167. 166.
    Kues, W. A. and Niemann, H. (2004) The contribution of farm animals to human health. Trends Biotechnol. 22, 286–294.PubMedCrossRefGoogle Scholar
  168. 167.
    Moore, A. (2001) Of mice and Mendel. The predicted rise in the use of knock-out and transgenic mice should cause us to reflect on our justification for the use of animals in research. EMBO Rep. 2, 554–558.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Louis-Marie Houdebine
    • 1
  1. 1.Biologie du Developpement et ReproductionInstitut National de la Recherche AgronomiqueParisFrance

Personalised recommendations