Advertisement

Detection of Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae in Blood and Cerebrospinal Fluid Using Fluorescence-Based PCR

  • Stuart C. Clarke
Part of the Methods in Molecular Biology™ book series (MIMB, volume 345)

Abstract

The polymerase chain reaction (PCR) is a fundamental part of modern molecular biology. Fluorescence-based PCR methods also are now available, which enable rapid, specific, and sensitive assays for the amplification and analysis of deoxyribonucleic acid (DNA). These methods are performed in closed-tube format, thereby reducing the risk of contamination between stages. In addition, post-PCR processing, such as clean-up steps and gel electrophoresis, are eliminated as the results are read via an integrated fluorimeter. An example of this methodology is fluorescence-based PCR using dual-labeled probes, termed dual-labeled end-point fluorescence PCR. This method uses oligonucleotide probes that are dual-labeled with a reporter dye and quencher dye. The method has the advantage that DNA extraction, liquid handling, PCR, and analysis also can be fully automated. In this chapter, the simultaneous detection of Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae from clinical samples is described.

Key Words

Polymerase chain reaction fluorescence-based PCR PCR DNA amplification Neisseria meningitidis Streptococcus pneumoniae Haemophilus influenzae meningitis septicemia laboratory diagnosis molecular biology 

References

  1. 1.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., et al. (1988) Primer-directed enzymatic amplification of, DNA with a thermostable, DNA polymerase. Science 239, 487–491.CrossRefPubMedGoogle Scholar
  2. 2.
    Clarke, S. C. (2002) Nucleotide sequence-based typing of bacteria and the impact of automation. Bioessays 24, 858–862.CrossRefPubMedGoogle Scholar
  3. 3.
    Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and, Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting, PCR product and nucleic acid hybridization. PCR Methods, Appl. 4, 357–362.Google Scholar
  4. 4.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.CrossRefPubMedGoogle Scholar
  5. 5.
    Wright, P. A. and Wynford-Thomas, D. (1990) The polymerase chain reaction: miracle or mirage? A critical review of its uses and limitations in diagnosis and research. J. Pathol. 162, 99–117.CrossRefPubMedGoogle Scholar
  6. 6.
    Kwok, S. and Higuchi, R. (1989) Avoiding false positives with PCR. Nature 339, 237–238.CrossRefPubMedGoogle Scholar
  7. 7.
    Guiver, M., Levi, K., and Oppenheim, B. A. (2001) Rapid identification of candida species by TaqMan PCR. J. Clin. Pathol. 54, 362–366.CrossRefPubMedGoogle Scholar
  8. 8.
    Heid, C. A., Stevens, J., Livak, K. J., and, Williams, P. M. (1996) Real time quantitative PCR. Genome, Res. 6, 986–994.CrossRefGoogle Scholar
  9. 9.
    Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.CrossRefPubMedGoogle Scholar
  10. 10.
    Cardullo, R. A., Agrawal, S., Flores, C., Zamecnik, P. C., and, Wolf, D. E. (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 85, 8790–8794.CrossRefPubMedGoogle Scholar
  11. 11.
    Higuchi, R., Fockler, C., Dollinger, G., and, Watson, R. (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11, 1026–1030.CrossRefGoogle Scholar
  12. 12.
    Guiver, M., Borrow, R., Marsh, J., et al. (2000) Evaluation of the applied biosystems automated Taqman polymerase chain reaction system for the detection of meningococcal DNA. FEMS Immunol. Med. Microbiol. 28, 173–179.CrossRefPubMedGoogle Scholar
  13. 13.
    Diggle, M. A., Edwards, G. F., and, Clarke, S. C. (2001) Automation of fluorescence-based PCR for confirmation of meningococcal disease. J. Clin. Microbiol. 39, 4518–4519.CrossRefPubMedGoogle Scholar
  14. 14.
    Diggle, M. A. and Clarke, S. C. (2003) Detection and genotyping of meningococci using a nested PCR approach. J. Med. Microbiol. 52, 51–57.CrossRefPubMedGoogle Scholar
  15. 15.
    Smith, K., Diggle, M. A., and, Clarke, S. C. (2004) Automation of a fluorescence-based multiplex PCR for the laboratory confirmation of common bacterial pathogens. J. Med. Microbiol. 53, 115–117.CrossRefPubMedGoogle Scholar
  16. 16.
    Taha, M. K., Alonso, J. M., Cafferkey, M., et al. (2005) Interlaboratory comparison of PCR-based identification and genogrouping of Neisseria meningitidis. J. Clin. Microbiol. 43, 144–149.CrossRefPubMedGoogle Scholar
  17. 17.
    Diggle, M. A., Smith, K., Girvan, E. K., and, Clarke, S. C. (2003) Evaluation of a fluorescence-based PCR method for identification of serogroup a meningococci. J. Clin. Microbiol. 41, 1766–1768.CrossRefPubMedGoogle Scholar
  18. 18.
    Guiver, M., Fox, A. J., Mutton, K., Mogulkoc, N., and, Egan, J. (2001) Evaluation of CMV viral load using TaqMan CMV quantitative PCR and comparison with CMV antigenemia in heart and lung transplant recipients. Transplantation 71, 1609–1615.CrossRefPubMedGoogle Scholar
  19. 19.
    Smith, K., Diggle, M. A., and, Clarke, S. C. (2003) Comparison of commercial, DNA extraction kits for extraction of bacterial genomic DNA from whole-blood samples. J. Clin. Microbiol. 41, 2440–2443.CrossRefPubMedGoogle Scholar
  20. 20.
    McChlery, S. M. and Clarke, S. C. (2003) The use of hydrolysis and hairpin probes in real-time PCR. Mol. Biotechnol. 25, 267–274.CrossRefPubMedGoogle Scholar
  21. 21.
    Duke, T., Curtis, N., and, Fuller, D. G. (2003) The management of bacterial meningitis in children. Expert Opin. Pharmacother. 4, 1227–1240.CrossRefPubMedGoogle Scholar
  22. 22.
    Peltola, H. (1983) Meningococcal disease: still with us. Rev. Infect. Dis. 5, 71–91.PubMedGoogle Scholar
  23. 23.
    van, Deuren, M., Meis, J. F. (2001) Meningococcal disease. N. Engl. J. Med. 345, 699–703.CrossRefPubMedGoogle Scholar
  24. 24.
    Hart, C. A., Cuevas, L. E., Marzouk, O., Thomson, A. P., Sills, J. (1993) Management of bacterial meningitis. J. Antimicrob. Chemother. 32, 49–59.PubMedGoogle Scholar
  25. 25.
    O’Donovan, D., Iversen, A., Trounce, J., Curtis, S. (2000) Outbreak of group, C meningococcal infection affecting two preschool nurseries. Commun. Dis. Public Health 3, 177–180.PubMedGoogle Scholar
  26. 26.
    Gilmore, A., Jones, G., Barker, M., Soltanpoor, N., Stuart, J. M. (1999) Meningococcal disease at the University of Southampton: outbreak investigation. Epidemiol. Infect. 123, 185–192.CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenstein, N. E., Fischer, M., Tappero, J. W. (2001) Meningococcal vaccines. Infect. Dis. Clin. North Am. 15, 155–169.CrossRefPubMedGoogle Scholar
  28. 28.
    Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones, V., Fox, A. J., Kaczmarski, E. B. (2001) Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J. Clin. Microbiol. 39, 1553–1558.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Stuart C. Clarke
    • 1
  1. 1.Portsmouth City Primary Care Trust, Finchdean HousePortsmouthUK

Personalised recommendations