Amplified Fragment-Length Polymorphism and Protein Profiling for Identification of Campylobacter lari Subgroups

  • Birgitta Duim
  • Jaap Wagenaar
Part of the Methods in Molecular Biology™ book series (MIMB, volume 345)


Amplified fragment-length polymorphism analysis (AFLP) has been shown to be a suitable method for subtyping of bacteria belonging to the genus Campylobacter. Campylobacter lari is a phenotypically and genotypically diverse species that comprises the classical nalidixic acid-resistant thermophilic campylobacters and the biochemical C. lari variants, urease-positive, nalidixic acid-susceptible, and urease producing nalidixic acid-susceptible strains. AFLP profiling and whole-cell protein profile analysis are suitable methods for studying the taxonomic and epidemiological relationships among strains of the C. lari variants. Numerical analysis of AFLP profiles and of partial protein profiles allows the discrimination of distinct C. lari genogroups. No correlation of these genogroups with different sources of the strains has been identified until now.

Key Words

Campylobacter lari AFLP typing genogroups protein profiling 


  1. 1.
    Skirrow, M. B. and Blaser, M. J. (2000) Clinical aspects of Campylobacter infections, in: Campylobacter, 2nd. Ed. (Nachamkin, I. and Blaser, M. J, eds.), American Society for Microbiology, Washington D.C., pp. 69–88.Google Scholar
  2. 2.
    Lastovica, A. J. and Skirrow, M. B. (2000) Clinical significance of Campylobacter and related species other than Campylobacter jejuni and C. coli, in Campylobacter, 2nd Ed. (Nachamkin, I. and Blaser, M.J., eds.), American Society for Microbiology, Washington, DC, pp. 89–98.Google Scholar
  3. 3.
    Tauxe, R. V. (1992) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized coutries, in Campylobacter jejuni: Current Status and Future Trends (Nachamkin, I., Blaser, M. J., and Tompkins, L. S., eds.), American Society for Microbiology, Washington, DC, pp. 9–19.Google Scholar
  4. 4.
    Martinot, M., Jaulhac, B., Moog, R., et al. (2001) Campylobacter lari bacteremia. Clin. Microbiol. Infect. 7, 96–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Morris, C. N., Scully, B., and Garvey, G. J. (1998) Campylobacter lari associated with permanent pacemaker infection and bacteremia. Clin. Infect. Dis. 27, 220–221.PubMedCrossRefGoogle Scholar
  6. 6.
    Bezian, M. C., Ribou, G., Barberis-Giletti, C., and Megraud, F. (1990) Isolation of a urease positive thermophilic variant of Campylobacter lari from a patient with urinary tract infection. Eur. J. Clin. Microbiol. Infect. Dis. 9, 895–897.PubMedCrossRefGoogle Scholar
  7. 7.
    Goudswaard, J., Sabbe, L., and te Winkel, W. (1995) Reactive arthritis as a complication of Campylobacter lari enteritis. J. Infect. 31, 171–172.PubMedCrossRefGoogle Scholar
  8. 8.
    Werno, A. M., Klena, J. D., Shaw, G. M., and Murdoch, D. R. (2002) Fatal case of Campylobacter lari prosthetic joint infection and bacteremia in an immunocompetent patient. J. Clin. Microbiol. 40, 1053–1055.PubMedCrossRefGoogle Scholar
  9. 9.
    Abeyta, C., Deeter, F. G., Kaysner, C. A., Stott, R. F., and Wekell, M. M. (1993) Campylobacter jejuni in a Washington sate shellfish growing bed associated with illness. J. Food. Prot. 56, 323–325.Google Scholar
  10. 10.
    Nachamkin, I., Stowell, C., Skalma, D., Jones, A. M., Hoop, R. II, and Smibert, R. M. (1984) Campylobacter laridis causing bacteremia in an immunosuppressed patient. Ann. Intern. Med. 101, 55–57.PubMedGoogle Scholar
  11. 11.
    Engberg, J., On, S. L. W., Harrington, C. S., and Gerner-Smidt, P. (2000) Prevalence of Campylobacter, Arcobacter, Helicobacter and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J. Clin. Microbiol. 38, 286–291.PubMedGoogle Scholar
  12. 12.
    Endtz, H. Ph., Vliegenthart, J. S., Vandamme, P., et al. (1997) Genotypic diversity of Campylobacter lari isolated from mussels and oysters in The Netherlands. Int. J. Food Microbiol. 34, 79–88.PubMedCrossRefGoogle Scholar
  13. 13.
    Owen, R. J., Costas, M., Sloss, L. L., and Bolton, F. J. (1988) Numerical analysis of eletrophoretic protein patterns of Campylobacter laridis and allied thermophilic campylobacters from the natural environment. J. Appl. Bacteriol. 65, 69–78.PubMedGoogle Scholar
  14. 14.
    Vandamme, P., Bot, P., and Kersters, K. (1991) Differentiation of Campylobacters and Campylobacter-like organisms by numerical analysis of one-dimensional electrophoretic proteinpatterns. Syst. Appl. Microbiol. 14, 57–66.Google Scholar
  15. 15.
    Mégraud, F., Chevrier, D., Deplaces, N., Sedallian, A., and Guesdon, J. L. (1988) Urease-positive thermophilic Campylobacters (Campylobacter laridis variant) isolated from an appendix and from human faeces. J. Clin. Microbiol. 26, 1050–1051.PubMedGoogle Scholar
  16. 16.
    Janssen, P., Coopman, R., Huys, G., et al. (1996) Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142, 1881–1893.PubMedCrossRefGoogle Scholar
  17. 17.
    Duim, B., Vandamme, P. R., Rigter, A., Laevens, S., Dijkstra, J. R., and Wagenaar, J. A. (2001) Differentiation of Campylobacter species by AFLP fingerprinting. Microbiology. 147, 2729–2737.PubMedGoogle Scholar
  18. 18.
    Duim, B., Godschalk, P. C.R., van den Braak, N., et al. (2003) Molecular evidence for dissemination of unique Campylobacter jejuni clones in Curacao, Netherlands Antilles. J. Clin. Microbiol. 41, 5593–5597.PubMedCrossRefGoogle Scholar
  19. 19.
    Duim, B., Wagenaar, J. A., Dijkstra, J. R., Goris, J., Endtz, H. P., and Vandamme, P. A. R. (2004) Identification of distinct Campylobacter lari genogroups by amplified fragment length polymorphism and protein electrophoretic profiles. Appl. Environ. Microbiol. 70, 18–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Kersters, K. and De Ley, J. (1975) Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. J. Gen. Microbiol. 87, 333–342.PubMedGoogle Scholar
  21. 21.
    Pot, B., Vandamme, P., and Kersters, K. (1994) Analysis of electrophoretic whole-organism protein fingerprints, in Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics. (Goodfellow M., and O’Donnell A. G., eds.), J. Wiley and Sons, New York, pp. 493–521.Google Scholar
  22. 22.
    Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K., and Swings, J. (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60, 407–438.PubMedGoogle Scholar
  23. 23.
    Boom, R., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim-Van Dillen, P. M., and van der Noorda, N. J. (1990) Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503.Google Scholar
  24. 24.
    Miller, J. F., Dower, W. J., and Tompkins, L. S. (1988) High-voltage electroporation of bacteria—genetic-transformation of Campylobacter jejuni with plasmid DNA. Proc. Nat. Acad. Sci. USA. 85, 856–860.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Birgitta Duim
    • 1
  • Jaap Wagenaar
    • 2
  1. 1.Department of Medical MicrobiologyAcademic Medical CenterAmsterdamThe Netherlands
  2. 2.Animal Sciences GroupLelystadThe Netherlands

Personalised recommendations