Advertisement

Rye (Secale cereale L.)

  • Fredy Altpeter
Part of the Methods in Molecular Biology book series (MIMB, volume 343)

Summary

Rye (Secale cereale L.) is one of the most recalcitrant plant species for tissue culture and genetic transformation. Embryogenic rye callus loses its ability to regenerate plants quickly in response to high density of Agrobacterium and other stressors. The cocultivation of Agrobacterium and rye immature embryos in liquid medium facilitated washing of the cultures to avoid Agrobacterium overgrowth and allowed a high throughput. More than 40 independent transgenic plants were regenerated with one to four Southern-positive, independent events from 100 inoculated immature embryos. Agrobacterium strain AGL0 supported stable integration of a constitutive nptII selectable marker expression cassette into the genome of rye inbred line L22, as indicated by regeneration of plantlets on paromomycin-containing culture medium, Southern blot, Western blot, and the analysis of T-DNA::plant DNA boundary sequences. Transgenic plants were phenotypically normal and fully fertile, which might be a consequence of the short time in tissue culture.

Key Words

Rye Secale cereale L. cereal transformation liquid cocultivation medium Agrobacterium-mediated gene transfer npt II cereal transformation inbred lines AGL0 

References

  1. 1.
    Castillo, A. M., Vasil, V., and Vasil I. K. (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Biotechnology 12, 1366–1371.CrossRefGoogle Scholar
  2. 2.
    De la Pena, A., Lorz, H., and Schell, J. (1987). Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325, 274–276.CrossRefGoogle Scholar
  3. 3.
    Popelka, J. C. and Altpeter F. (2001) Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereale L.) inbred lines. Plant Cell Rep. 20, 575–582.CrossRefGoogle Scholar
  4. 4.
    Geiger, H. H. and Schnell, F. W. (1970) Die Züchtung von Roggensorten aus Inzuchtlinien. Theor. Appl. Genet. 40, 305–311.CrossRefGoogle Scholar
  5. 5.
    Miedaner, T. (1997) de Roggen: vom Unkraut zur Volksnahrung. DLG-Verlag: Frankfurt/Main.Google Scholar
  6. 6.
    Popelka, J. C. and Altpeter, F. (2003a) Evaluation of rye (Secale cereale L.) inbred lines and their crosses for tissue culture response and stable genetic transformation of homozygous rye inbred line L22 by biolistic gene transfer. Theor. Appl. Genet. 107, 583–590.PubMedCrossRefGoogle Scholar
  7. 7.
    Altpeter, F., Popelka, J. C., and Wieser, H. (2004) Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour. Plant Mol. Biol. 54, 783–792.PubMedCrossRefGoogle Scholar
  8. 8.
    Altpeter, F., Baisakh, N., Beachy, R., et al. (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol. Breeding 15, 305–327.CrossRefGoogle Scholar
  9. 9.
    Czernilofsky, A. P., Hain, R., Baker, B., and Wirtz, U. (1986) Studies of the structure and functional organization of foreign DNA integrated into the genome of Nicotiana tabacum. DNA 5, 473–482.PubMedCrossRefGoogle Scholar
  10. 10.
    Koncz, C., Martini, N., Mayerhofer, R., et al. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86, 8467–8471.PubMedCrossRefGoogle Scholar
  11. 11.
    McKnight, T. D., Lillis, M. T., and Simpson, R. B. (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8, 439–445.CrossRefGoogle Scholar
  12. 12.
    Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. (1996) Vector carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165–174.PubMedCrossRefGoogle Scholar
  13. 13.
    Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994) Efficient transformation of rice (Oriza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng, M., Fry, J. E., Pang, S., et al. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115, 971–980.PubMedGoogle Scholar
  15. 15.
    Tingay, S., McElroy, D., Kalla, R., et al. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11, 1369–1376.CrossRefGoogle Scholar
  16. 16.
    Popelka, J. C. and Altpeter, F. (2003b) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol. Breeding 11, 203–211.CrossRefGoogle Scholar
  17. 17.
    Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.PubMedCrossRefGoogle Scholar
  18. 18.
    Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., and Schilperpoort, R. A. (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.CrossRefGoogle Scholar
  19. 19.
    Alt-Mörbe, J., Kühmann, H., and Schröder, J. (1989) Differences in induction of Ti-plasmid virulence genes virG and virD and continued control of virD expression by four external factors. Mol. Plant Microbe Interact. 2, 301–308.CrossRefGoogle Scholar
  20. 20.
    Usami, S., Okamoto, S., Takebe, I., and Machida, Y. (1988) Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc. Natl. Acad. Sci. USA 85, 3748–3752.PubMedCrossRefGoogle Scholar
  21. 21.
    Nauerby, B., Billing, K., and Wyndaele, R. (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci. 123, 169–177.CrossRefGoogle Scholar
  22. 22.
    Mersereau, M. Pazour, G. J., and Das, A. (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90, 149–151.PubMedCrossRefGoogle Scholar
  23. 23.
    Altpeter, F. and Xu, J. (2000) Rapid production of transgenic turfgrass (Festuca rubra L.) plants. J. Plant Physiol. 157, 441–448.Google Scholar
  24. 24.
    Lazo, G. R., Stein, P. A., and Ludwig, R. A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963–967.PubMedCrossRefGoogle Scholar
  25. 25.
    Christensen, A. H. and Quail, P. H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen. Res. 5, 213–218.CrossRefGoogle Scholar
  26. 26.
    Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.PubMedCrossRefGoogle Scholar
  27. 27.
    Zimny, J. and Lorz, H. (1989) High frequency of somatic embryogenesis and plant regeneration of rye (Secale cereale L.). Plant Breeding 102, 89–100.CrossRefGoogle Scholar
  28. 28.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 15, 473–479.CrossRefGoogle Scholar
  29. 29.
    Popelka, J. C., Xu, J., and Altpeter, F. (2003) Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgen. Res. 12, 587–596.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Fredy Altpeter

There are no affiliations available

Personalised recommendations