Structure Analysis of MicroRNA Precursors

  • Jacek Krol
  • Wlodzimierz J. Krzyzosiak
Part of the Methods in Molecular Biology™ book series (MIMB, volume 342)


MicroRNA biogenesis occurs in several steps from their precursors having irregular hairpin structures. The highly variable architecture of these stem-and-loop structures, which have terminal loops of various sizes and diverse structure destabilizing motifs present in their stem sections, may strongly influence the process of microRNA liberation. In order to better understand this process, more details regarding its structural basis are required A substantial part of this information may be derived from the structure analysis of microRNA precursor using biochemical methods. Here we show how the analysis with the use of various nucleases and metal ions is performed. The presented protocols include the design of DNA template-phage promoter fusions to generate natural precursor ends, and the tests performed to check the sequence and structure homogeneity of the in vitro transcripts prior to probing their structures.

Key Words

miRNA miRNA precursor structure analysis 


  1. 1.
    Lee, R. and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.CrossRefPubMedGoogle Scholar
  2. 2.
    Lagos-Quintana, M., Rauhut, R., Lendlecker, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encode small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.CrossRefPubMedGoogle Scholar
  4. 4.
    Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669.CrossRefPubMedGoogle Scholar
  5. 5.
    Largos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA 9, 175–179.CrossRefGoogle Scholar
  6. 6.
    Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116,281–297.CrossRefPubMedGoogle Scholar
  7. 7.
    Tomari, Y. and Zamore, P. D. (2005) Perspective: machines for RNAi. Genes Dev. 19, 517–529.CrossRefPubMedGoogle Scholar
  8. 8.
    Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee, Y., Ahn, C., Han, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.CrossRefPubMedGoogle Scholar
  10. 10.
    Gregory, R. I., Yan, K., Amuthan, G., et al. (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240.CrossRefPubMedGoogle Scholar
  11. 11.
    Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2003) Nuclear export of microRNA precursors. Science 303, 95–98.CrossRefPubMedGoogle Scholar
  12. 12.
    Hutvágner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D.(2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.CrossRefPubMedGoogle Scholar
  13. 13.
    Cullen, B. R. (2004) Transcription and processing of human microRNA precursors. Mol.Cell 16, 861–865.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang, H., Kolb, F., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68.Google Scholar
  15. 15.
    Hutvágner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.CrossRefPubMedGoogle Scholar
  16. 16.
    Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.CrossRefPubMedGoogle Scholar
  17. 17.
    Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.CrossRefPubMedGoogle Scholar
  18. 18.
    Schwarz, D. S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.CrossRefPubMedGoogle Scholar
  19. 19.
    Krol, J. and Krzyzosiak, W. J. (2004) Structural aspects of microRNA biogenesis. IUBMB Life 56, 95–100.CrossRefPubMedGoogle Scholar
  20. 20.
    Zeng, Y. and Cullen, B. R. (2003) Sequence requirements for microRNA processing and function in human cells. RNA 9, 112–123.CrossRefPubMedGoogle Scholar
  21. 21.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.CrossRefPubMedGoogle Scholar
  22. 22.
    Krol, J., Sobczak, K., Wilczynska, U., et al. (2004) Structural features of microRNA precursors and their relevance to miRNA biogenesis and siRNA/shRNA design. J. Biol. Chem. 279, 42,230–42,239.CrossRefPubMedGoogle Scholar
  23. 23.
    Krzyzosiak, W. J., Napierala, M., and Drozdz, M. (1999) RNA structure modules with trinucleotide repeat motifs. In: RNA Biochemistry and Biotechnology (Barciszewski, J. and Clark, B. F. C., eds.), Kluwer Academic Publishers Dordrecht, pp. 303–314.Google Scholar
  24. 24.
    Krzyzosiak, W. J., Denman, R., Nurse, K., et al. (1987) In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26, 2353–2364.CrossRefPubMedGoogle Scholar
  25. 25.
    Gaur, R. K., Hanne, A., and Krupp, G. (2004) Combination of chemical and enzymatic RNA synthesis. Methods Mol. Biol. 252, 9–17.PubMedGoogle Scholar
  26. 26.
    Lee S. S. and Kang, C. (1993) Two base pairs at-9 and-8 distinguish between the bacteriophage T7 and SP6 promoters. J. Biol. Chem. 268, 19,299–19,304.PubMedGoogle Scholar
  27. 27.
    Shin, I., Kim, J., Cantor, C., and Kang, C. (2000) Effect of saturation mutagenesis of the phage SP6 promoter on transcription activity, presented by activity logos. Proc. Natl. Acad. Sci. USA. 97, 3890–3895.CrossRefPubMedGoogle Scholar
  28. 28.
    Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J. P., and Ehresmann, B. (1987) Probing the structure of RNAs in solution. Nucleic Acids Res. 15, 9109–9128.CrossRefPubMedGoogle Scholar
  29. 29.
    Giege, R., Helm, M., and Florentz, C. (2001) Classical and novel chemical tools for RNA structure probing. In: RNA (Soll, D., Nishimura, S., and Moore, P. B., eds.), Elsevier Sciences Oxford, pp. 71–89.CrossRefGoogle Scholar
  30. 30.
    Knapp, G. (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 180, 192–212.CrossRefPubMedGoogle Scholar
  31. 31.
    Napierala, M. and Krzyzosiak, W. J. (1997) CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J. Biol. Chem. 272, 31,079–31,085.CrossRefPubMedGoogle Scholar
  32. 32.
    Favorova, O. O., Fasiolo, F., Keith, G., Vassilenko, S. K., and Ebel, J. P. (1981) Partial digestion of tRNA—aminoacyl-tRNA synthetase complexes with cobra venom ribonuclease. Biochemistry 20, 1006–1011.CrossRefPubMedGoogle Scholar
  33. 33.
    Lowman, H. B. and Draper, D. E. (1986) On the recognition of helical RNA by cobra venom V1 nuclease. J. Biol. Chem. 261, 5396–5403.PubMedGoogle Scholar
  34. 34.
    Marciniec, T. Ciesiolka, J., Wrzesinski, J., and Krzyzosiak, W. J. (1989) Identification of the magnesium, europium and lead binding sites in E. coli and lupine tRNAPhe by specific metal ion-induced cleavages. FEBS Lett. 243, 293–298.CrossRefPubMedGoogle Scholar
  35. 35.
    Ciesiolka, J., Wrzesinski, J., Gornicki, P., Podkowinski, J., and Krzyzosiak, W. J. (1989) Analysis of magnesium, europium and lead binding sites in methionine initiator and elongator tRNAs by specific metal-ion-induced cleavages. Eur. J. Biochem. 186, 71–77.CrossRefPubMedGoogle Scholar
  36. 36.
    Wrzesinski, J., Michalowski, D., Ciesiolka, J., and Krzyzosiak, W. J. (1995) Specific RNA cleavages induced by manganese ions. FEBS Lett. 374, 62–68.CrossRefPubMedGoogle Scholar
  37. 37.
    Streicher, B., Westhof, E., and Schroeder, R. (1996) The environment of two metal ions surrounding the splice site of a group I intron. EMBO J. vn15, 2556–2564.Google Scholar
  38. 38.
    Krzyzosiak, W. J., Marciniec, T., Wiewiorowski, M., Romby, P., Ebel, J. P., and Giege, R.(1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27, 5771–5777.CrossRefPubMedGoogle Scholar
  39. 39.
    Ciesiolka, J., Michalowski, D., Wrzesinski, J., Krajewski, J., and Krzyzosiak, W. J. (1998) Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs. J. Mol. Biol. 275, 211–220.CrossRefPubMedGoogle Scholar
  40. 40.
    Gornicki, P., Baudin, F., Romby, P., et al. (1989) Use of lead(II) to probe the structure of large RNA’s. Conformation of the 3′ terminal domain of E. coli 16S rRNA and its involvement in building the tRNA binding sites. J. Biomol. Struct. Dyn. 6, 971–984.PubMedGoogle Scholar
  41. 41.
    Michalowski, D., Wrzesinski, J., and Krzyzosiak, W. J. (1996) Cleavages induced by different metal ions in yeast tRNA(Phe) U59C60 mutants. Biochemistry 35, 10,727–10,734.CrossRefPubMedGoogle Scholar
  42. 42.
    Brown, R. S., Hingerty, B. E., Dewan, J. C., and Klug, A. (1983) Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe-implications for lead toxicity and self-splicing RNA. Nature 303, 543–546.CrossRefPubMedGoogle Scholar
  43. 43.
    Brown, R. S., Dewan, J. C., and Klug, A. (1985) Crystallographic and biochemical investigation of the lead (II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24, 4785–4801.CrossRefPubMedGoogle Scholar
  44. 44.
    Pan, T., Long, G. M., and Uhlenbeck, O. C. (1993) Divalent metal ions in RNA folding and catalysis. In: The RNA World (Gesteland, R. F. and Atkins, J. F., eds.), Cold Spring Harbor Laboratory Press New York, pp. 271–302.Google Scholar
  45. 45.
    Pyle, A. M. (1996) Role of metal ions in ribozymes. In: Metal Ions in Biological Systems (Sigel, A. and Sigel, H., eds.), Marcel Dekker Basel, pp. 479–520.Google Scholar
  46. 46.
    Sobczak, K., de Mezer, M., Michlewski, G., Krol, J., and Krzyzosiak, W. J. (2003) RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 31, 5469–5482.CrossRefPubMedGoogle Scholar
  47. 47.
    Michlewski, G. and Krzyzosiak, W. J. (2004) Molecular architecture of CAG repeats in human disease related transcripts. J. Mol. Biol. 340, 665–679.CrossRefPubMedGoogle Scholar
  48. 48.
    Sobczak, K. and Krzyzosiak, W. J. (2005) CAG repeats containing CAA interruptionsform branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J. Biol. Chem. 280, 3898–3910.CrossRefPubMedGoogle Scholar
  49. 49.
    Napierala, M., Michalowski, D., de Mezer, M., and Krzyzosiak, W. J. (2005) Facile FMR1 mRNA structure regulation by interruptions in CGG repeats. Nucleic Acids Res. 33, 451–463.CrossRefPubMedGoogle Scholar
  50. 50.
    Sobczak, K. and Krzyzosiak, W. J. (2002) Structural determinants of BRCA1 translational regulation. J. Biol. Chem. 277, 17,349–17,358.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Jacek Krol
    • 1
  • Wlodzimierz J. Krzyzosiak
    • 1
  1. 1.Laboratory of Cancer GeneticsInstitute of Bioorganic Chemistry, Polish Academy of SciencesNoskowskiegoPoland

Personalised recommendations