Design and Synthesis of β-Peptides With Biological Activity

  • Marc J. Koyack
  • Richard P. Cheng
Part of the Methods in Molecular Biology book series (MIMB, volume 340)

Abstract

β-Peptides have been used as a platform for developing bioactive compounds with various types of bioactivity such as antimicrobial activity, cholesterol absorption inhibition, somatostatin receptor agonist, and hDM2 inhibition. These bioactive β-peptides have been designed based on bioactive a-peptides. Three main strategies have been used to design bioactive β-peptides: direct conversion of a-peptide sequences into β-peptide sequences, placement of side chains to provide desirable distribution of physicochemical properties, and the grafting of proteinaceous side chains critical for bioactivity onto β-peptide structures. This chapter briefly discusses the various strategies employed to design bioactive β-peptides, followed by protocols for the synthesis of N-α-fluorenylmethyloxycarbonyl (Fmoc)-protected β3-amino acids from Fmoc-protected α-amino acids, and synthesis of β-peptides by solid phase methods using Fmoc-based chemistry.

Key Words

β-Amino acids bioactivity foldamers β-peptides rational design 

References

  1. 1.
    Bemis, G. W. and Murcko, M. A. (1996) The properties of known drugs. J. Med. Chem. 39, 2887–2893.PubMedCrossRefGoogle Scholar
  2. 2.
    Bemis, G. W. and Murcko, M. A. (1999) Properties of known drugs. 2. Sidechains. J. Med. Chem. 42, 5095–5099.PubMedCrossRefGoogle Scholar
  3. 3.
    Falciani, C., Lozzi, L., Pini, A., and Bracci, L. (2005) Bioactive peptides from libraries. Chem. Biol. 12, 417–426.PubMedCrossRefGoogle Scholar
  4. 4.
    Seebach, D. and Matthews, J. L. (1997) β-Peptides: a surprise at every turn. Chem. Commun. 2015–2022.Google Scholar
  5. 5.
    Gellman, S. H. (1998) Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180.CrossRefGoogle Scholar
  6. 6.
    Cheng, R. P., Gellman, S. H., and DeGrado, W. F. (2001) β-peptides: from structure to function. Chem. Rev. 101, 3219–3232.PubMedCrossRefGoogle Scholar
  7. 7.
    Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R., and Gellman, S. H. (1996) β-Peptide foldamers: robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 118, 13,071–13,072.CrossRefGoogle Scholar
  8. 8.
    Seebach, D., Ciceri, P. E., Overhand, M., Juan, B., Rigo, D., Oberer, L., et al. (1996) Probing the helical secondary structure of short-chain β-peptides. Helv. Chim. Acta 79, 2043–2066.CrossRefGoogle Scholar
  9. 9.
    Daura, K. X. G., Schaefer, H., Juan, B., Seebach, D., and van Gunsteren, W. F. (2001) The β-peptide hairpin in solution: conformational study of a β-hexapeptide in methanol by NMR spectroscopy and MD simulation. J. Am. Chem. Soc. 123, 2393–2404.PubMedCrossRefGoogle Scholar
  10. 10.
    Langenhan, J. M., Guzei, I. A., and Gellman, S. H. (2003) Parallel sheet secondary structure in β-peptides. Angew. Chem. Int. Ed. Engl. 42, 2402–2405.PubMedCrossRefGoogle Scholar
  11. 11.
    Wiegand, H., Wirz, B., Schweitzer, A., Camenisch, G. P., Perez, M. I. R., Gross, G., et al. (2002) The outstanding metabolic stability of a C14-labeled β-nonapeptide in rats—in vitro and in vivo pharmacokinetic studies. Biopharm. Drug Dispos. 23, 251–262.PubMedCrossRefGoogle Scholar
  12. 12.
    Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V., and Seebach, D. (2001) The outstanding biological stability of β-and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBiochem 2, 445–455.PubMedCrossRefGoogle Scholar
  13. 13.
    Seebach, D., Abele, S., Schreiber, J. V., Martinoni, B., Nussbaum, A. K., Schild, H., et al. (1998) Biological and pharmacokinetic studies with β-peptides. Chimia 52, 734–739.Google Scholar
  14. 14.
    Rueping, M., Mahajan, Y., Sauer, M., and Seebach, D. (2002) Cellular uptake studies with β-peptides. ChemBiochem 3, 257–259.PubMedCrossRefGoogle Scholar
  15. 15.
    Umezawa, N., Gelman, M. A., Haigis, M. C., Raines, R. T., and Gellman, S. H. (2002) Translocation of a β-peptide across cell membranes. J. Am. Chem. Soc. 124, 368–369.PubMedCrossRefGoogle Scholar
  16. 16.
    Potocky, T. B., Menon, A. K., and Gellman, S. H. (2003) Cytoplasmic and nuclear delivery of a TAT-derived peptide and a β-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278, 50,188–50,194.PubMedCrossRefGoogle Scholar
  17. 17.
    Potocky, T. B., Menon, A. K., and Gellman, S. H. (2005) Effects of conformational stability and geometry of guanidinium display on cell entry by β-peptides. J. Am. Chem. Soc. 127, 3686–3687.PubMedCrossRefGoogle Scholar
  18. 18.
    Hintermann, T. and Seebach, D. (1997) The biological stability of β-peptides: no interactions between α-and β-peptidic structures. Chimia 51, 244–247.Google Scholar
  19. 19.
    Schreiber, J. V., Frackenpohl, J., Moser, F., Fleischmann, T., Kohler, H. P. E., and Seebach, D. (2002) On the biodegradation of β-peptides. ChemBiochem 3, 424–432.PubMedCrossRefGoogle Scholar
  20. 20.
    Fauchere, J. L. and Thurieau, C. (1992) Evaluation of the stability of peptides and pseudopeptides as a tool in peptide drug design. Adv. Drug Res. 23, 127–159.Google Scholar
  21. 21.
    Appella, D. H., Christianson, L. A., Klein, D. A., Powell, D. R., Huang, X. L., Barchi, J. J., et al. (1997) Residue-based control of helix shape in β-peptide oligomers. Nature 387, 381–384.PubMedCrossRefGoogle Scholar
  22. 22.
    Seebach, D., Overhand, M., Kuhnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U., et al. (1996) β-Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by x-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv. Chim. Acta 79, 913–941.CrossRefGoogle Scholar
  23. 23.
    Cheng, R. P. and DeGrado, W. F. (2001) De novo design of a monomeric helical β-peptide stabilized by electrostatic interactions. J. Am. Chem. Soc. 123, 5162–5163.PubMedCrossRefGoogle Scholar
  24. 24.
    Arvidsson, P. I., Reuping, M., and Seebach, D. (2001) Design, machine synthesis, and NMR solution structure of a β-heptapeptide forming a salt bridge stabilised 314-helix in methanol and in water. Chem. Commun. 649–650.Google Scholar
  25. 25.
    Raguse, T. L., Lai, J. R., and Gellman, S. H. (2002) Evidence that the β-peptide 14-helix is stabilized by β3-residues with side-chain branching adjacent to the β-carbon atom. Helv. Chim. Acta 85, 4154–4164.CrossRefGoogle Scholar
  26. 26.
    Kritzer, J. A., Tirado-Rives, J., Hart, S. A., Lear, J. D., Jorgensen, W. L., and Schepartz, A. (2005) Relationship between side chain structure and 14-helix stability of β3-peptides in water. J. Am. Chem. Soc. 127, 167–178.PubMedCrossRefGoogle Scholar
  27. 27.
    Hart, S. A., Bahadoor, A. B. F., Matthews, E. E., Qiu, X. Y. J., and Schepartz, A. (2003) Helix macrodipole control of β3-peptide 14-helix stability in water. J. Am. Chem. Soc. 125, 4022–4023.PubMedCrossRefGoogle Scholar
  28. 28.
    Armstrong, K. M. and Baldwin, R. L. (1993) Charged histidine affects a-helix stability at all positions in the helix by interacting with the backbone charges. Proc. Natl. Acad. Sci. USA 90, 11,337–11,340.PubMedCrossRefGoogle Scholar
  29. 29.
    Guichard, G., Abele, S., and Seebach, D. (1998) Preparation of N-Fmoc-protected β2-and β3-amino acids and their use as building blocks for the solid phase synthesis of β-peptides. Helv. Chim. Acta 81, 187–206.CrossRefGoogle Scholar
  30. 30.
    Juaristi, E. (ed.). (1997) Enantioselective Synthesis of β-Amino Acids. Wiley-VCH, New York.Google Scholar
  31. 31.
    Lelais, G. and Seebach, D. (2004) β2-Amino acids—syntheses, occurrence in natural products, and components of β-peptides. Biopolymers 76, 206–243.PubMedCrossRefGoogle Scholar
  32. 32.
    Juaristi, E., Escalente, J., Lamatsch, B., and Seebach, D. (1992) Enatioselective synthesis of β-amino acids. 2. preparation of the like stereoisomers of 2-methyland 2-benzyl-3-aminobutanoic acid. J. Org. Chem. 57, 2396–2398.CrossRefGoogle Scholar
  33. 33.
    Babu, V. V., Gopi, H. N., and Ananda, K. (1999) Homologation of a-amino acids to β-amino acids using Fmocamino acid pentafluorophenyl esters. J. Pept. Res. 53, 308–313.PubMedCrossRefGoogle Scholar
  34. 34.
    Seebach, D., Rueping, M., Arvidsson, P., Kimmerlin, T., Micuch, P., Noti, C., et al. (2001) Linear, peptidase-resistant β23-di-and α/β3-tetrapeptide derivatives with nanomolar affinities to a human somatostatin receptor—preliminary communication. Helv. Chim. Acta 84, 3503–3510.CrossRefGoogle Scholar
  35. 35.
    Gademann, K., Ernst, M., Hoyer, D., and Seebach, D. (1999) Synthesis and biological evaluation of a cyclo-β-tetrapeptide as a somatostatin analogue. Angew. Chem. Int. Ed. Engl. 38, 1223–1226.CrossRefGoogle Scholar
  36. 36.
    Nunn, C., Rueping, M., Langenegger, D., Schuepbach, E., Kimmerlin, T., Micuch, P., et al. (2003) β23-di-and α/β3-tetrapeptide derivatives as potent agonists at somatostatin sst4 receptors. Naunyn. Schmiedebergs Arch. Pharmacol. 367, 95–103.PubMedCrossRefGoogle Scholar
  37. 37.
    Gademann, K., Kimmerlin, T., Ernst, M., Seebach, D., and Hoyer, D. (2000) The cyclo-β-tetrapeptide (β-HPhe-β-HThr-β-HLys-β-HTrp): synthesis, NMR structure in methanol solution, and affinity for human somatostatin receptors. Helv. Chim. Acta 83, 16–33.CrossRefGoogle Scholar
  38. 38.
    Gademann, K., Kimmerlin, T., Hoyer, D., and Seebach, D. (2001) Peptide folding induces high and selective affinity of a linear and small β-peptide to the human somatostatin receptor 4. J. Med. Chem. 44, 2460–2468.PubMedCrossRefGoogle Scholar
  39. 39.
    Gelman, M. A., Richter, S., Cao, H., Umezawa, N., Gellman, S. H., and Rana, T. M. (2003) Selective binding of TAR RNA by a tat-derived β-peptide. Org. Lett. 5, 3563–3565.PubMedCrossRefGoogle Scholar
  40. 40.
    Epand, R. F., Raguse, T. L., Gellman, S. H., and Epand, R. M. (2004) Antimicrobial 14-helical β-peptides: potent bilayer disrupting agents. Biochemistry 43, 9527–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Epand, R. F., Umezawa, N., Porter, E. A., Gellman, S. H., and Epand, R. M. (2003) Interactions of the antimicrobial β-peptide β-17 with phospholipid vesicles differ from membrane interactions of magainins. Eur. J. Biochem. 270, 1240–1248.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu, D. H. and DeGrado, W. F. (2001) De novo design, synthesis, and characterization of antimicrobial β-peptides. J. Am. Chem. Soc. 123, 7553–7559.PubMedCrossRefGoogle Scholar
  43. 43.
    Porter, E. A., Weisblum, B., and Gellman, S. H. (2002) Mimicry of host-defense peptides by unnatural oligomers: antimicrobial β-peptides. J. Am. Chem. Soc. 124, 7324–7330.PubMedCrossRefGoogle Scholar
  44. 44.
    Raguse, T. L., Porter, E. A., Weisblum, B., and Gellman, S. H. (2002) Structureactivity studies of 14-helical antimicrobial β-peptides: probing the relationship between conformational stability and antimicrobial potency. J. Am. Chem. Soc. 124, 12,774–12,785.PubMedCrossRefGoogle Scholar
  45. 45.
    Arvidsson, P. I., Ryder, N. S., Weiss, H. M., Gross, G., Kretz, O., Woessner, R., et al. (2003) Antibiotic and hemolytic activity of a β23 peptide capable of folding into a 12/10-helical secondary structure. ChemBiochem 4, 1345–1347.PubMedCrossRefGoogle Scholar
  46. 46.
    Arvidsson, P. I., Ryder, N. S., Weiss, H. M., Hook, D. F., Escalente, J., and Seebach, D. (2005) Exploring the antibacterial and hemolytic activity of shorterand longer-chain β, α,β, and γ-peptides, and of β-peptides from β2-3-Aza-and β3-2-methylidene-amino acids bearing proteinogenic side chains—a survey. Chem. Biodiv. 2, 401–420.CrossRefGoogle Scholar
  47. 47.
    Hamuro, Y., Schneider, J. P., and DeGrado, W. F. (1999) De novo design of antibacterial β-peptides. J. Am. Chem. Soc. 121, 12,200–12,201.CrossRefGoogle Scholar
  48. 48.
    Werder, M., Hauser, H., Abele, S., and Seebach, D. (1999) β-Peptides as inhibitors of small-intestinal cholesterol and fat absorption. Helv. Chim. Acta 82, 1774–1783.CrossRefGoogle Scholar
  49. 49.
    Kritzer, J. A., Lear, J. D., Hodsdon, M. E., and Schepartz, A. (2004) Helical β-peptide inhibitors of the p53-hDM2 interaction. J. Am. Chem. Soc. 126, 9468–9469.PubMedCrossRefGoogle Scholar
  50. 50.
    Kritzer, J. A., Stephens, O. M., Guarracino, D. A., Reznik, S. K., and Schepartz, A. (2005) β-peptides as inhibitors of protein-protein interactions. Bioorg. Med. Chem. 13, 11–16.PubMedCrossRefGoogle Scholar
  51. 51.
    White, P., Dorner, B., and Steinauer, R. (eds.) Synthesis notes, in Novabiochem 2004–2005 catalog, pp. 1.1–6.4.Google Scholar
  52. 52.
    Fields, G. B. and Noble, R. L. (1990) Solid-phase peptide synthesis utilizing 9-flurorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35, 161–214.PubMedCrossRefGoogle Scholar
  53. 53.
    Leggio, A., Liguori, A., Procopio, A., and Sindona, G. (1997) Convenient and stereospecific homologation of N-fluorenylmethoxycarbonyl-α-amino acids to their β-homologs. J. Chem. Soc., Perkin Trans. 13, 1969–1971.CrossRefGoogle Scholar
  54. 54.
    Schreiber, J. V. and Seebach, D. (2000) Solid-phase synthesis of a β-dodecapeptide with seven functionalized side chains and CD spectroscopic evidence for a dramatic structual switch when going from water to methanol solution. Helv. Chim. Acta 83, 3139–3152.CrossRefGoogle Scholar
  55. 55.
    Carpino, L. A. (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J. Am. Chem. Soc. 115, 4397–4398.CrossRefGoogle Scholar
  56. 56.
    Carpino, L. A., El-Faham, A., Minor, C. A., and Albericio, F. (1994) Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid phase peptide synthesis. J. Chem. Soc. Chem. Commun. 201–203.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Marc J. Koyack
    • 1
  • Richard P. Cheng
    • 1
  1. 1.Department of Chemistry, University at BuffaloThe State University of New YorkBuffalo

Personalised recommendations