Cell-Cell Interactions pp 17-35

Part of the Methods in Molecular Biology™ book series (MIMB, volume 341)

Interactions of Intestinal Epithelial Cells With Bacteria and Immune Cells: Methods to Characterize Microflora and Functional Consequences

  • Geraldine Canny
  • Alexander Swidsinski
  • Beth A. McCormick
Protocol

Abstract

Epithelial cells at all mucosal surfaces are potentially apposed to bacteria, particularly in the intestine. It is established that intestinal epithelial cells (IECs) represent an important barrier between lamina propria cells and the potentially harmful lumenal contents. In addition, IECs are important immunoeffector cells with the capacity to release cytokines, chemokines, and other molecules involved in antigen presentation and immune defense. The interaction of IECs with intestinal bacteria can result in a decrease in barrier function and the development of inflammation, which is known to be an important factor in the development of intestinal pathology. The potential role of such crosstalk between bacteria and other intestinal cell types in normal physiology and/or pathophysiology is therefore a topic of intense investigation. In this chapter, we provide protocols for the identification of bacteria that are associated with the epithelium and mucosa in addition to functional assays examining the interactions of neutrophils with epithelial cells and epithelial cell-mediated killing of bacteria.

Key Words

Structural organization of intestinal microbiota fluorescence in situ hybridization (FISH) bacterial–epithelial interactions neutrophil transepithelial migration bacterial killing by epithelial cells 

References

  1. 1.
    Berg, R. D. (1996) The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430–435.CrossRefPubMedGoogle Scholar
  2. 2.
    Sansonetti, P. J. (2004) War and peace at mucosal surfaces. Nat. Rev. Immunol. 4, 953–964.CrossRefPubMedGoogle Scholar
  3. 3.
    Ouellette, A. J. (2004) Defensin-mediated innate immunity in the small intestine. Best Pract. Res. Clin. Gastroenterol. 18, 405–419.CrossRefPubMedGoogle Scholar
  4. 4.
    Swidsinski, A., Ladhoff, A., Pernthaler, S., et al. (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Fiocchi, C. (1998) Inflammatory bowel disease; etiology and pathogenesis. Gastroenterology 115, 182–205.CrossRefPubMedGoogle Scholar
  6. 6.
    Turnbull, P. C. and Richmond, J. E. (1978) A model of salmonella enteritis: the behaviour of, Salmonella enteritidis in chick intestine studies by light and electron microscopy. Br. J. Exp. Pathol. 59, 64–75.PubMedGoogle Scholar
  7. 7.
    Wallis, T. S., Hawker, R. J., Candy, D. C., et al. (1989) Quantification of the leucocyte influx into rabbit ileal loops induced by strains of, Salmonella typhimurium of different virulence. J. Med. Microbiol. 30, 149–156.CrossRefPubMedGoogle Scholar
  8. 8.
    MacDermott, R. P. (1999) Chemokines in the inflammatory bowel diseases. J. Clin. Immunol. 19, 266–272.CrossRefPubMedGoogle Scholar
  9. 9.
    Ajuebor, M. N. and Swain, M. G. (2002) Role of chemokines and chemokine receptors in the gastrointestinal tract. Immunology 105, 137–143.CrossRefPubMedGoogle Scholar
  10. 10.
    Pavlick, K. P., Laroux, F. S., Fuseler, J., et al. (2002) Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease (1,2). Free Radic. Biol. Med. 33, 311–322.CrossRefPubMedGoogle Scholar
  11. 11.
    Nash, S., Stafford, J., and Madara, J. L. (1987) Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 80, 1104–1113.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee, C. A., Silva, M., Siber, A. M., Kelly, A. J., Galyov, E., and McCormick, B. A. (2000) A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc. Natl. Acad. Sci. USA 97, 12,283–12,288.Google Scholar
  13. 13.
    Mrsny, R. J., Gewirtz, A. T., Siccardi, D., et al. (2004) Identification of hepoxilin, A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. Proc. Natl. Acad. Sci. USA 101, 7421–7426.CrossRefPubMedGoogle Scholar
  14. 14.
    Zasloff, M. (1992) Antibiotic peptides as mediators of innate immunity. Curr. Opin. Immunol. 4, 3–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Nissen-Meyer, J. and Nes, I. F. (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167, 67–77.CrossRefGoogle Scholar
  16. 16.
    Canny, G., Levy, O., Furuta, G. T., et al. (2002) Lipid mediator induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Natl. Acad. Sci. USA 99, 3902–3907.CrossRefPubMedGoogle Scholar
  17. 17.
    Fellermann, K., Wehkamp, J., Herrlinger, K. R., and Stange, E. F. (2003) Crohn’s disease: a defensin deficiency syndrome? Eur. J. Gastroenterol. Hepatol. 15, 627–634.CrossRefPubMedGoogle Scholar
  18. 18.
    Costerton, J. W., Veeh, R., Shirtliff, M., Pasmore, M., Post, C., and Ehrlich, G. (2003) The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Invest. 112, 1466–1477.PubMedGoogle Scholar
  19. 19.
    Wilson, M. (2001) Bacterial biofilms and human disease. Sci. Prog. 84, 235–254.CrossRefPubMedGoogle Scholar
  20. 20.
    Amann, R., Krumholz, L., and Stahl, D. A. (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770.PubMedGoogle Scholar
  21. 21.
    Bohnert, J., Hübner, B., and Botzenhart, K. (2002) Rapid identification of Enterobacteriaceae using a novel 23S rR. N.A-targeted oligonucleotide probe. Int. J. Hyg. Environ. Health 203, 77–82.CrossRefGoogle Scholar
  22. 22.
    Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F., and Welling, G. W. (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rR. N.A-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64, 3336–3345.PubMedGoogle Scholar
  23. 23.
    Harmsen, H. J., Raangs, G. C., He, T., Degener, J. E., and Welling, G. W. (2002) Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol. 68, 2982–2990.CrossRefPubMedGoogle Scholar
  24. 24.
    Elsbach, P. and Weiss, J. (1992) Oxygen-independent antimicrobial systems of phagocytes, in Inflammation: Basic principles and Clinical Correlates, Second Edition (Gallin J. I., Goldstein I. M., and Snyderman R., eds.), Raven, New York, pp. 603–636.Google Scholar
  25. 25.
    Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabitini, D. D. (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77, 853–880.CrossRefPubMedGoogle Scholar
  26. 26.
    McCormick, B.A., Colgan, S. P., Delp-Archer, C., Miller, S. I., and Madara, J. L. (1993) Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signaling to subepithelial neutrophils. J. Cell Biol. 123, 895–907.CrossRefPubMedGoogle Scholar
  27. 27.
    Henson, P. M. and Oades, Z. G. (1975) Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates: secretion of granule constituents and increased oxidation of glucose. J. Clin. Invest. 56, 1053–1061.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee, C. A. and Falkow, S. (1990) The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87, 4304–4308.CrossRefPubMedGoogle Scholar
  29. 29.
    Lissner, C. R., Swanson, R. N., and O’Brien, A. D. (1983) Genetic control of the innate resistance of mice to Salmonella typhimurium expression of the Ity gene in peritoneal and splenic macrophages is located in vitro. J. Immunol. 131, 3006–3013.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Geraldine Canny
    • 1
    • 2
  • Alexander Swidsinski
    • 3
  • Beth A. McCormick
    • 4
  1. 1.Center for Experimental Therapeutics and Reperfusion InjuryBrigham
  2. 2.Women’s Hospital, Harvard Medical SchoolBoston
  3. 3.Innere Klinik, Gastroenterologie, CharitBerlinGermany
  4. 4.Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Department of Microbiology and Molecular GeneticsHarvard Medical SchoolBoston

Personalised recommendations