Mining Microarray Data at NCBI’s Gene Expression Omnibus (GEO)*

  • Tanya Barrett
  • Ron Edgar
Part of the Methods in Molecular Biology book series (MIMB, volume 338)

Abstract

The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) has emerged as the leading fully public repository for gene expression data. This chapter describes how to use Web-based interfaces, applications, and graphics to effectively explore, visualize, and interpret the hundreds of microarray studies and millions of gene expression patterns stored in GEO. Data can be examined from both experimentcentric and gene-centric perspectives using user-friendly tools that do not require specialized expertise in microarray analysis or time-consuming download of massive data sets. The GEO database is publicly accessible through the World Wide Web at http://www. ncbi.nlm.nih.gov/geo.

Key Words

Microarray gene expression database data mining 

References

  1. 1.
    Barrett, T., Suzek, T. O., Troup, D. B., et al. (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res. 33, (Database issue) D562–566.PubMedCrossRefGoogle Scholar
  2. 2.
    Edgar, R., Domrachev, M., and Lash, A. E. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210.PubMedCrossRefGoogle Scholar
  3. 3.
    Wheeler, D. L., Barrett, T., Benson, D. A., et al. (2005) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 33, (Database issue) D39–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Schuler, G. D., Epstein, J. A., Ohkawa, H., and Kans, J. A. (1996) Entrez: molecular biology database and retrieval system. Methods Enzymol. 266, 141–162.PubMedCrossRefGoogle Scholar
  5. 5.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  6. 6.
    Recinos, A. 3rd, Carr, B. K., Bartos, D. B., et al. (2004) Liver gene expression associated with diet and lesion development in atherosclerosis-prone mice: induction of components of alternative complement pathway. Physiol. Genomics 19, 131–142.PubMedCrossRefGoogle Scholar
  7. 7.
    Wu, X., Li, Y., Crise, B., and Burgess, S. M. (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751.PubMedCrossRefGoogle Scholar
  8. 8.
    Zerbini, L. F., Wang, Y., Czibere, A., et al. (2004) NF-kappa B-mediated repression of growth arrest-and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc. Natl. Acad. Sci. USA 101, 13618–13623.PubMedCrossRefGoogle Scholar
  9. 9.
    Rodwell, G. E., Sonu, R., Zahn, J. M., et al. (2004) A transcriptional profile of aging in the human kidney. PLoS Biol. 2, e427.PubMedCrossRefGoogle Scholar
  10. 10.
    Scott, M. S., Perkins, T., Bunnell, S., Pepin, F., Thomas, D. Y., and Hallett, M. T. (2005) Identifying regulatory subnetworks for a set of genes. Mol. Cell. Proteomics Feb 18 Epub.Google Scholar
  11. 11.
    Haverty, P. M., Frith, M. C., and Weng, Z. (2004) CARRIE web service: automated transcriptional regulatory network inference and interactive analysis. Nucleic Acids Res. 32, (Web Server issue) W213–216.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Tanya Barrett
    • 1
  • Ron Edgar
    • 1
  1. 1.National Center for Biotechnology InformationNational Institutes of HealthBethesda

Personalised recommendations