“Chip”ping Away at Heart Failure

  • J. David Barrans
  • Choong-Chin Liew
Protocol
Part of the Methods in Molecular Medicine book series (MIMM, volume 126)

Abstract

Studies in the field of microarray technology have exploded onto the scene to delve into the unknown underlying mechanisms and pathways in molecular disease. Diseases of the cardio-vascular system, particularly those with unexplained molecular etiologies, such as heart failure, have more recently been investigated using array technology. Our laboratory has sought to examine gene expression profiles of human heart failure using a 10,000+ element cardio-vascular-based complementary DNA microarray constructed in-house, termed the “CardioChip.” Our studies have identified panels of genes, such as those encoding sarcomeric and cytoskeletal proteins, stress proteins, and Ca2+ regulators, that are differentially expressed in disease conditions as compared with samples from nonfailing hearts. Microarrays are effective tools for examining molecular portraits of the cardiovascular disease condition.

Key Words

Microarray heart failure cardiomyopathy genomics cardiovascular disease 

References

  1. 1.
    Towbin, J. A. and Bowles, N. E. (2000) Genetic abnormalities responsible for dilated cardiomyopathy. Curr. Cardiol. Rep. 2, 475–480.CrossRefPubMedGoogle Scholar
  2. 2.
    Hwang, J. J., Dzau, V. J., and Liew, C. C. (2001) Genomics and the pathophysiol-ogy of heart failure. Current Cardiol. Rep. 3, 198–207.CrossRefGoogle Scholar
  3. 3.
    Jandreski, M. A. and Liew, C. C. (1987) Construction of a human ventricular cDNA library and characterization of a beta myosin heavy chain cDNA clone. Hum. Genet. 76, 47–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Liew, C. C. (1993) A human heart cDNA library—the development of an efficient and simple method for automated DNA sequencing. J. Mol. Cell. Cardiol. 25, 891–894.CrossRefPubMedGoogle Scholar
  5. 5.
    Hwang, D. M., Hwang, W. S., and Liew, C. C. (1994) Single pass sequencing of a unidirectional human fetal heart cDNA library to discover novel genes of the cardiovascular system. J. Mol. Cell. Cardiol. 26, 1329–1333.CrossRefPubMedGoogle Scholar
  6. 6.
    Hwang, D. M., Dempsey, A. A., Wang, R. X., et al. (1997) A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardio-vascular genes. Circulation 96, 4146–4203.PubMedGoogle Scholar
  7. 7.
    Liew, C. C., Hwang, D. M., Fung, Y. W., et al. (1994) A catalogue of genes in the cardiovascular system as identified by expressed sequence tags. Proc. Natl. Acad. Sci. USA 91, 10,645–10,649.CrossRefPubMedGoogle Scholar
  8. 8.
    Barrans, J. D. (2002) Genomic Exploration of Cardiovascular-Based Gene Expression, PhD Thesis, University of Toronto, Department of Laboratory Medicine and Pathobiology.Google Scholar
  9. 9.
    Liew, C. C., Hwang, D. M., Wang, R. X., et al. (1997) Construction of a human heart cDNA library and identification of cardiovascular based genes (CVBest). Mol. Cell. Biochem. 172, 81–87.CrossRefPubMedGoogle Scholar
  10. 10.
    Shalon, D., Smith, S. J., and Brown, P. O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridiza-tion. Genome Res. 6, 639–645.CrossRefPubMedGoogle Scholar
  11. 11.
    DeRisi, J., Penland, L., Brown, P. O., et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460.CrossRefPubMedGoogle Scholar
  12. 12.
    Lau, W. Y., Lai, P. B., Leung, M. F., et al. (2000) Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis. Oncol. Res. 12, 59–69.PubMedGoogle Scholar
  13. 13.
    Wolf, M., El-Rifai, W., Tarkkanen, M., et al. (2000) Novel findings in gene expression detected in human osteosarcoma by cDNA microarray. Cancer Genet. Cytogenet. 123, 128–132.CrossRefPubMedGoogle Scholar
  14. 14.
    van’ t Veer, L. J., Dai, H., van de Vijver, M. J., et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.CrossRefGoogle Scholar
  15. 15.
    Mori, M., Mimori, K., Yoshikawa, Y., et al. (2002) Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 131(1 Suppl), S39–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Hippo, Y., Taniguchi, H., Tsutsumi, S., et al. (2002) Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 62, 233–240.PubMedGoogle Scholar
  17. 17.
    Alizadeh, A., Eisen, M., Davis, R. E., et al. (1999) The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb. Symp. Quant. Biol. 64, 71–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511.CrossRefPubMedGoogle Scholar
  19. 19.
    Shipp, M. A., Ross, K. N., Tamayo, P., et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Granjeaud, S., Nguyen, C., Rocha, D., Luton, R., and Jordan, B.R. (1996) From hybridization image to numerical values: a practical, high throughput quantifica-tion system for high density filter hybridizations. Genet. Anal. 12, 151–162.PubMedGoogle Scholar
  21. 21.
    Bertucci, F., Bernard, K., Loriod, B., et al. (1999) Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Hum. Mol. Genet. 8, 1715–1722.CrossRefPubMedGoogle Scholar
  22. 22.
    Nguyen, C., Rocha, D., Granjeaud, S., et al. (1995) Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29, 207–216.CrossRefPubMedGoogle Scholar
  23. 23.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative moni-toring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.CrossRefPubMedGoogle Scholar
  24. 24.
    Lockhart, D. J. and Winzeler, E. A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827–836.CrossRefPubMedGoogle Scholar
  25. 25.
    Bowtell, D. D. (1999) Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21(1 Suppl), 25–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21(1 Suppl), 20–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R. W. (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10,614–10,619.CrossRefPubMedGoogle Scholar
  28. 28.
    Stanton, L. W., Garrard, L. J., Damm, D., et al. (2000) Altered patterns of gene expression in response to myocardial infarction. Circ. Res. 86, 939–945.PubMedGoogle Scholar
  29. 29.
    Yang, J., Moravec, C. S., Sussman, M. A., et al. (2000) Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102, 3046–3052.PubMedGoogle Scholar
  30. 30.
    Yang, J., Moravec, C. S., Sussman, M. A., et al. (2000) Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 97, 6745–6750.CrossRefGoogle Scholar
  31. 31.
    Hanatani, A., Yoshiyama, M., Kim, S., et al. (1998) Assessment of cardiac function and gene expression at an early phase after myocardial infarction. Jpn. Heart J. 39, 375–388.PubMedGoogle Scholar
  32. 32.
    Mittmann, C., Munstermann, U., Weil, J., et al. (1998) Analysis of gene expression patterns in small amounts of human ventricular myocardium by a multiplex RNase protection assay. J. Mol. Med. 76, 133–140.CrossRefPubMedGoogle Scholar
  33. 33.
    Lowes, B. D., Minobe, W., and Abraham, W. T. (1997) Changes in gene expression in the intact human heart: downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 100, 2315–2324.CrossRefPubMedGoogle Scholar
  34. 34.
    Mendez, R. E., Pfeffer, J. M., Ortola, F. V., et al. (1987) Atrial natriuretic peptide transcription, storage, and release in rats with myocardial infarction. Am. J. Physiol. 253, H1449–1455.PubMedGoogle Scholar
  35. 35.
    Friddle, C. J., Koga, T., Rubin, E. M., et al. (2000) Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 97, 6745–6750.CrossRefPubMedGoogle Scholar
  36. 36.
    Haase, D., Lehmann, M. H., Korner, M. M., et al. (2002) Identification and valida-tion of selective upregulation of ventricular myosin light chain type 2 mRNA in idiopathic dilated cardiomyopathy. Eur. J. Heart Fail. 4, 23–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Napoli, C., Lerman, L.O., Sica, V., Lerman, A., Tajana, G., and de Nigris, F. (2003) Microarray analysis: a novel research tool for cardiovascular scientists and physicians. Heart 89, 597–604.CrossRefPubMedGoogle Scholar
  38. 38.
    Grzeskowiak, R., Witt, H., Drungowski, M., et al. (2003) Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc. Res. 59, 400–411.CrossRefPubMedGoogle Scholar
  39. 39.
    Steenbergen, C., Afshari, C. A., Petrank, J. G., et al. Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am. J. Physiol. Heart. Circ. Physiol. 284, H268–H276.Google Scholar
  40. 40.
    Kapoun, A. M., Liang, F., O’Young, G., et al. B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-β in primary human cardiac fibroblasts. Fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ. Res. 94, 453–461.Google Scholar
  41. 41.
    Chen, M. M., Ashley, E. A., Deng, D. X., et al. (2003) Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108, 1432–1439.CrossRefPubMedGoogle Scholar
  42. 42.
    Barrans, J. D., Stamatiou, D., and Liew, C. C. (2001) Construction of a human cardiovascular cDNA microarray: portrait of the failing heart. Biochem. Biophys. Res. Comm. 280, 964–969.CrossRefPubMedGoogle Scholar
  43. 43.
    Barrans, J. D., Allen, P. D., Stamatiou, D., Dzau, V. J., and Liew, C. C. (2002) Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am. J. Path. 160, 2035–2043.CrossRefPubMedGoogle Scholar
  44. 44.
    Hwang, J. J., Allen, P. D., Tsseng, G. C., et al. (2002) Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genomics 10, 31–44.PubMedGoogle Scholar
  45. 45.
    Liew, C. C. and Dzau, V. (2004) Molecular genetics and genomics of heart failure. Nat. Rev. Genet. 5, 811–825.CrossRefPubMedGoogle Scholar
  46. 46.
    Liew, C. C. (2005) Expressed genome molecular signatures of heart failure. Clin. Chem. Lab. Med. 43, 462–469.CrossRefPubMedGoogle Scholar
  47. 47.
    Cunha-Neto, E., Dzau, V. J., Allen, P. D., et al. (2005) Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas disease cardiomyopathy. Am. J. Path. 167, 305–313.CrossRefPubMedGoogle Scholar
  48. 48.
    Hwang, D. M., Dempsey, A. A., Lee, C. Y., and Liew, C. C. (2000) Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics 66, 1–14.CrossRefPubMedGoogle Scholar
  49. 49.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • J. David Barrans
    • 1
  • Choong-Chin Liew
    • 1
  1. 1.Department of MedicineBrigham and Women’s HospitalBoston

Personalised recommendations