Fluorescent Energy Transfer Nucleic Acid Probes pp 95-114

Part of the Methods in Molecular Biology™ book series (MIMB, volume 335)

Homogenous Detection of Nucleic Acids Using Self-Quenched Polymerase Chain Reaction Primers Labeled With a Single Fluorophore (LUX™ Primers)

  • Irina Nazarenko

Abstract

Multiplex quantitative polymerase chain reaction (PCR) based on novel design of fluorescent primers is described. Self-quenched fluorogenic primers are labeled with a single fluorophore on a base close to the 3′-end with no quencher required. A tail of 5-7 nucleotides is added to the 5′-end of the primer to form a blunt-end hairpin when the primer is not incorporated into a PCR product. This design provides a low initial fluorescence of the primers that increases upon formation of the PCR product. The hairpin oligonucleotides (ΔG from -1.6 to -5.8 kcal/mol) are as efficient as linear primers and provide additional specificity to the PCR by preventing primer-dimers and mispriming. Self-quenched primers could be designed manually or by specialized software and could be used for real-time gene quantitation. Targets of 10-107 copies could be detected with precision in PCR using fluorescein-labeled primers for variable genes and JOE-labeled primers for the reference genes. This method could also be used to detect single nucleotide polymorphism by allele-specific PCR. In conclusion, self-quenched primers are an efficient and cost-effective alternative to fluorescence resonance energy transfer-labeled oligonucleotides.

Key Words

Real-time PCR self-quenched primers fluorescent detection gene quantitation SNP detection 

References

  1. 1.
    Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Real time quantitative PCR. Genome Res. 6, 986–994.PubMedCrossRefGoogle Scholar
  2. 2.
    Freeman, W. M., Walker, S. J., and Vrana, K. E. (1999) Quantitative RT-PCR: pitfalls and potential. Biotechniques 26, 112–125.PubMedGoogle Scholar
  3. 3.
    Bustin, S. A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193.PubMedCrossRefGoogle Scholar
  4. 4.
    Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11, 1026–1030.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee, L. G., Connell, C. R., and Bloch, W. (1993) Allelic discrimination by nicktranslation PCR with fluorogenic probes. Nucleic Acids Res. 21, 3761–3766.PubMedCrossRefGoogle Scholar
  6. 6.
    Livak, K. J., Flood, S. J. A., Marmaro, J., Giusti, W., and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.PubMedGoogle Scholar
  7. 7.
    Wittwer, C. T., Herrmann, M. G., Moss, A. A., and Rasmussen, R. P. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–138.PubMedGoogle Scholar
  8. 8.
    Bernard, P. S. and Wittwer, C. T. (2002) Real-time PCR technology for cancer diagnostics. Clin. Chem. 48, 1178–1185.PubMedGoogle Scholar
  9. 9.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308.CrossRefGoogle Scholar
  10. 10.
    Nazarenko, I. A., Bhatnagar, S. K., and Hohman, R. J. (1997) A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res. 25, 2516–2521.PubMedCrossRefGoogle Scholar
  11. 11.
    Thelwell, N., Millington, S., Solinas, A., Booth, J., and Brown, T. (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. 28, 3752–3761.PubMedCrossRefGoogle Scholar
  12. 12.
    Todd, A. V., Fuery, C. J., Impey, H. L., Applegate, T.L., and Haughton, M. A. (2000) DzyNA-PCR: use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clin. Chem. 46, 625–630.PubMedGoogle Scholar
  13. 13.
    Clegg, R. M. (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388.PubMedCrossRefGoogle Scholar
  14. 14.
    Lianos, P. and Georghiou, S. (1979) Complex formation between pyrene and the nucleotides GMP, CMP, TMP and AMP. Photochem. Photobiol. 29, 13–21.CrossRefGoogle Scholar
  15. 15.
    Shafirovich, V. Y., Courtney, S. H., Ya, N., and Geacintov, N. E. (1995) Protoncoupled photoinduced electron transfer, deuterium isotope effects, and fluorescence quenching in noncovalent benzo[α]pyrenetetraol-nucleoside complexes in aqueous solutions. J. A. Chem. Soc. 117, 4920–4929.CrossRefGoogle Scholar
  16. 16.
    Seidel, C. A. M., Schulz, A., and Sauer, M. H. M. (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 100, 5541–5553.CrossRefGoogle Scholar
  17. 17.
    Widengren, J., Dapprich, J., and Rigler, R. (1997) Fast interactions between Rh6G and dGTP in water studied by fluorescence correlation spectroscopy. Chem. Physics 216, 417–426.CrossRefGoogle Scholar
  18. 18.
    Walter, N. G. and Burke, J. M. (1997) Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA 3, 392–404.PubMedGoogle Scholar
  19. 19.
    Sauer, M., Drexhage, K. H., Lieberwirth, U., Muller, R., Nord, S., and Zander, C. (1998) Dynamics of the electron transfer reaction between an oxazine dye and DNA oligonucleotides monitored on the single-molecule level. Chem. Physical Letters 284, 153–163.CrossRefGoogle Scholar
  20. 20.
    Lewis, F. D., Letzinger, R. L., and Wasielewski, M. R. (2001) Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Acc. Chm. Res. 34, 159–170.CrossRefGoogle Scholar
  21. 21.
    Cardullo, R. A., Agrawal, S., Flores, C., Zamecnik, P. C., and Wolf, D. E. (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 85, 8790–8794.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee, S. P., Porter, D., Chirikjian, J. G., Knutson, J. R., and Han, M. K. (1994) A fluorometric assay for DNA cleavage reactions characterized with BamHI restriction endonuclease. Anal. Biochem. 220, 377–383.PubMedCrossRefGoogle Scholar
  23. 23.
    Knemeyer, J. P., Marme, N., and Sauer, M. (2000) Probes for detection of specific DNA sequences at the single-molecule level. Anal. Chem. 72, 3717–3724.PubMedCrossRefGoogle Scholar
  24. 24.
    Crockett, A. O. and Wittwer, C. T. (2001) Fluorescein-labeled oligonucleotides for real-time PCR: using the inherent quenching of deoxyguanosine nucleotides. Anal. Biochem. 290, 89–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Kurata, S., Kanagawa, T., Yamada, K., et al. (2001) Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY((R)) FL-labeled probe or primer. Nucleic Acids Res. 29, E34.PubMedCrossRefGoogle Scholar
  26. 26.
    Nazarenko, I., Pires, R., Lowe, B., Obaidy, M., and Rashtchian, A. (2002) Effect of primary and secondary structure of oligonucleotides on the fluorescent properties of the conjugated dyes. Nucleic Acids Res. 30, 2089–2195.PubMedCrossRefGoogle Scholar
  27. 27.
    Nazarenko, I., Lowe, B., Darfler, M., Ikonomi, P., Schuster, D., and Rashtchian, A. (2002) Multiplex quantitative PCR using self-quenched primerslabeled with a single fluorophore. Nucleic Acids Res. 30, e37.PubMedCrossRefGoogle Scholar
  28. 28.
    Ailenberg, M. and Silverman, M. (2000) Controlled hot start and improved specificity in carrying out PCR utilizing touch-up and loop incorporated primers (TULIPS). BioTechniques 29, 1018–1024.PubMedGoogle Scholar
  29. 29.
    Kaboev, O. K., Luchkina, L. A., Tret’iakov, A. N., and Bahrmand, A. R. (2000) PCR hot start using primers with the structure of molecular beacons (hairpin-like structure). Nucleic Acids Res. 28, e94.PubMedCrossRefGoogle Scholar
  30. 30.
    Ju J., Ruan C., Fuller, C. W., Glazer, A. N., and Mathies, R. A. (1995) Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. USA 92, 4347–4351.PubMedCrossRefGoogle Scholar
  31. 31.
    Petruska, J., Goodman, M. F., Boosalis, M. S., Sowers, L. S., Cheong, C., and Tinoco, I., Jr. (1988) Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc. Natl. Acad. Sci. USA 85, 6252–6256.PubMedCrossRefGoogle Scholar
  32. 32.
    Farrar, G. J., Kenna, P., Jordan, S. A., Kumar-Singh, R., and Humphries, P. (1991) A sequence polymorphism in the human peripherin/RDS gene. Nucleic Acids Res., 19, 6982.PubMedCrossRefGoogle Scholar
  33. 33.
    Wiederholt, K., Rajur, S. B., and McLaughlin, L. W. (1997) Oligonucleotides tethering Hoechst 33258 derivatives: effect of the conjugation site on duplex stabilization and fluorescence properties. Bioconjugate Chem. 8, 119–126.CrossRefGoogle Scholar
  34. 34.
    Myakishev, M. V., Khripin, Y., Hu, S., and Hamer, D. H. (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 11, 163–169.PubMedCrossRefGoogle Scholar
  35. 35.
    Nuovo, G. J., Hohman, R. J., Nardone, G. A., and Nazarenko, I. (1999) In situ amplification using universal energy transfer-labeled primers. J. Histochem. Cytochem. 47, 273–279.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Irina Nazarenko

There are no affiliations available

Personalised recommendations