Culture of Human Embryonic Stem Cells on Human and Mouse Feeder Cells

  • Gautam Dravid
  • Holly Hammond
  • Linzhao Cheng
Part of the Methods In Molecular Biology book series (MIMB, volume 331)

Abstract

This chapter describes the methods we use to maintain and expand undifferentiated human embryonic stem (hES) cells on human and mouse feeder cells. All of the available hES cells have been derived and propagated on primary mouse embryonic fibroblasts as feeder cells that have been mitotically inactivated. We found that hES cells can be successfully cultured on selected human feeder cells, such as marrow stromal cells derived from adult bone marrow and breast skin fibroblasts. Detailed protocols to use human and mouse feeder cells are described here, together with our method to split hES cells by trypsin/ethylenediaminetetraacetic acid-mediated dissociation. We also describe methods we use to characterize hES cells expanded on either human or mouse feeder cells, including alkaline phosphatase staining, immunostaining for cell-surface markers associated with undifferentiated hES cells, and teratoma formation in mice.

Key Words

Embryonic stem cells human stem cells mesenchymal stem cells marrow stromal cells MSCs feeder cells fibroblasts immortalization self-renewal pluripotency teratoma 

References

  1. 1.
    Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.PubMedCrossRefGoogle Scholar
  2. 2.
    Reubinoff B. E., Pera M. F., Fong C., Trounson A., and Bongso A. (2000) Embryonic stem lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng L., Hammond H., Ye Z., Zhan X., and Dravid G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells inn culture. Stem Cells 21, 131–142.PubMedCrossRefGoogle Scholar
  4. 4.
    Richards M., Fong C. Y., Chan W. K., Wong P. C., and Bongso A. (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936.PubMedCrossRefGoogle Scholar
  5. 5.
    Amit M., Margulets V., Segev H., et al. (2003) Human feeder layers for human embryonic stem cells. Biol. Reprod. 68, 2150–2156.PubMedCrossRefGoogle Scholar
  6. 6.
    Hovatta O., Mikkola M., Gertow K., et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1049.PubMedCrossRefGoogle Scholar
  7. 7.
    Richards M., Fong C. Y., Chan W. K., Wong P. C., and Bongso A. (2002). Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936.Google Scholar
  8. 8.
    Dravid G., Ye Z., Hammond H., et al. (2005) Defining the role of Wnt/bcatenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells Jul 7, e-pub ahead of print.Google Scholar
  9. 9.
    Berstine E. G., Hooper M. L., Grandchamp S., and Ephrussi B. (1973) Alkaline phosphatase activity in mouse teratoma. Proc. Natl. Acad. Sci. USA 70, 3899–3903.PubMedCrossRefGoogle Scholar
  10. 10.
    Andrew P. W., Meyer L. J., Bednarz K. L., and Harris H. (1984) Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with liver isozyme of human alkaline phosphatase. Hybridoma 3, 33–39.CrossRefGoogle Scholar
  11. 11.
    Henderson J. K., Draper J. S., Baillie H. S., et al. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20, 329–337.PubMedCrossRefGoogle Scholar
  12. 12.
    Draper J. S., Pigott C., Thomson J. A., and Andrews P. W. (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat. 200, 249–258.PubMedCrossRefGoogle Scholar
  13. 13.
    Shevinsky L. H., Knowles B. B., Damjanov I., and Solter D. (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30, 697–705.PubMedCrossRefGoogle Scholar
  14. 14.
    Solter D. and Knowles B. B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565–5569.PubMedCrossRefGoogle Scholar
  15. 15.
    Kannagi R., Cochran N. A., Ishigami F., et al. (1983) Stage-specific embryonic antigens (SSEA-3 and-4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2, 2355–2361.PubMedGoogle Scholar
  16. 16.
    Xu C., Inokuma M. S., Denham J., et al. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Gautam Dravid
    • 1
  • Holly Hammond
    • 1
  • Linzhao Cheng
    • 1
  1. 1.Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimore

Personalised recommendations