Propagation of Human Embryonic Stem Cells on Human Feeder Cells

  • Mark Richards
  • Ariff Bongso
Part of the Methods In Molecular Biology book series (MIMB, volume 331)


Human embryonic stem (hES) cell lines are usually derived and propagated on inactivated murine embryonic fibroblast (MEF) feeders. The use of MEFs and culture ingredients of animal origin for hES cell support increases the risk of cross-contamination of the hES cells with infectious animal agents from the MEFs and animal-based culture medium. This thus makes such hES cells lines undesirable for clinical application. This chapter describes several protocols used in the propagation of hES cells on human fibroblast feeder cells. Two culture methods, the bulk enzymatic culture protocol and the microdissection “cut and paste” protocol are described. Only certain human fetal and adult fibroblast feeders support hES cell growth. Methods for the characterization of pluripotent undifferentiated hES cells grown on human feeders including cell surface marker staining and real-time polymerase chain reaction are also described.

Key Words

Bulk culture &quote;cut and paste&quote; protocol human adult fibroblasts human embryonic stem cells human fetal fibroblasts nonsupportive feeder supportive feeder 


  1. 1.
    Thompson J. A., Itskovitz-Eldor J., Shapiro S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.CrossRefGoogle Scholar
  2. 2.
    Reubinoff B. E., Pera M. F., Fong C. Y., Trounson A., and Bongso A. (2000 Embryonic stem cell lines from human blastocysts: somatic differentiatfion in vitro. Nat. Biotechnol. 18, 399–404.PubMedCrossRefGoogle Scholar
  3. 3.
    Richards M., Fong C. Y., Chan W. K., Wong P. C., and Bongso A. (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936.PubMedCrossRefGoogle Scholar
  4. 4.
    Richards M., Tan S., Fong C. Y., Biswas A., Chan W. K., and Bongso A. (2003) Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21, 546–556.PubMedCrossRefGoogle Scholar
  5. 5.
    Amit M., Margulets V., Segev H., et al. (2003) Human feeder layers for human embryonic stem cells. Biol. Reprod. 68, 2150–2156.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng L., Hammond H., Ye Z., Zhan X., and Dravid G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21, 131–142.PubMedCrossRefGoogle Scholar
  7. 7.
    Hovatta O., Mikkola M., Gertow K., et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1409.PubMedCrossRefGoogle Scholar
  8. 8.
    Schuldiner M., Yanuka O., Itskovitz-Eldor J., Melton D. A., and Benvenisty N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 97, 11,307–11,312.PubMedCrossRefGoogle Scholar
  9. 9.
    Draper J. S., Smith K., Gokhale P., et al. (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Livak K. J. and Schmittgen T. D. (2001) Analysis of relative gene expression using quantitative PCR and the 2-CT method. Methods 25, 402–408.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith A. G., Heath J. K., Donaldson D. D., et al. (1988) Inhibition of pluripotent embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.PubMedCrossRefGoogle Scholar
  12. 12.
    Williams R. L., Hilton D. J., Pease S., et al. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential embryonic stem cells. Nature 336, 684–687.PubMedCrossRefGoogle Scholar
  13. 13.
    Sperger J. M., Chen X., Draper J. S., et al. (2003) Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. USA 100, 13,350–13,355.PubMedCrossRefGoogle Scholar
  14. 14.
    Richards M., Tan S. P., Tan J. H., Chan W. K., and Bongso A. (2004) The tran-scriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Bhattacharya B., Miura T., Brandenberg R., et al. (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956–2964.PubMedCrossRefGoogle Scholar
  16. 16.
    Sato N., Meijer L., Skaltsounis L., Greengard P., and Brivanlou A. H. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Sato N., Sanjuan I. M., Heke M., Uchida M., Naef F., and Brivanlou A. H. (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol. 260, 404–413.PubMedCrossRefGoogle Scholar
  18. 18.
    Applied Biosystems, Foster City, CA, application note.“Amplification Efficiency of TaqMan, Assay on Demand Gene Expression Products.” January 2004.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Mark Richards
    • 1
  • Ariff Bongso
    • 1
  1. 1.Department of Obstetrics and GynecologyNational University Hospital, National University of SingaporeKent RidgeSingapore

Personalised recommendations