Derivation and Characterization of Neural Cells From Embryonic Stem Cells Using Nestin Enhancer

  • Nibedita Lenka
Part of the Methods in Molecular Biology™ book series (MIMB, volume 330)


The embryonic stem (ES) cells derived from the inner cell mass of the blastula stage embryo bear the complete repertoire of the complex organizational blueprint of an organism. These fascinating cells are bestowed with pluripotent characteristics and can be directed to differentiate into various lineages in vitro. Hence, these cells are being explored as an ideal in vitro model in gaining insight into early developmental events. Using the ES cell system, we have tried to investigate the early neurogenic proceedings. We have taken advantage of nestin enhancer-mediated cell trapping using the live reporter-based system. We monitored live the ES cell differentiation into neural lineage by following the enhanced green fluorescent protein expression profile in a number of stable ES cell clones generated by us in which the enhanced green fluorescent protein expression was regulated by the nestin enhancer. This strategy has helped us in both qualitative and quantitative detection and characterization of neural progenitor population and the differentiated progenies.

Key Words

ES cells glia live reporter nestin neural stem cells neurogenesis neuron 


  1. 1.
    Okabe S., Forsberg-Nilsson K., Spiro A. C., Segal M., and McKay R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.CrossRefPubMedGoogle Scholar
  2. 2.
    Kolossov E., Fleischmann B. K., Liu Q., et al. (1998) Functional characteristics of ES cellderived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J. Cell Biol. 143, 2045–2056.CrossRefPubMedGoogle Scholar
  3. 3.
    Lenka N., Lu Z. J., Sasse P., Hescheler J., and Fleischmann B. K. (2002) Quantitation and functional characterization of neural cells derived from ES cells using nestin enhancer mediated targeting in vitro. J. Cell Sci. 115, 1471–1485.PubMedGoogle Scholar
  4. 4.
    Lendahl U., Zimmerman L. B., and McKay R. D. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595.CrossRefPubMedGoogle Scholar
  5. 5.
    Zimmerman L., Parr B., Lendahl U., et al. (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12, 11–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Lothian C. and Lendahl U. (1997) An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur. J. Neurosci. 9, 452–462.CrossRefPubMedGoogle Scholar
  7. 7.
    Josephson R., Muller T., Pickel J., et al. (1998) POU transcription factors control expression of CNS stem cell-specific genes. Development 125, 3087–3100.PubMedGoogle Scholar
  8. 8.
    Lothian C., Prakash N., Lendahl U., and Wahlstrom G. M. (1999) Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter. Exp. Cell Res. 248, 509–519.CrossRefPubMedGoogle Scholar
  9. 9.
    Yaworsky P. J. and Kappen C. (1999) Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev. Biol. 205, 309–321.CrossRefPubMedGoogle Scholar
  10. 10.
    Lendahl U. (1997) Transgenic analysis of central nervous system development and regeneration. Acta Anaesthesiol. Scand. Suppl. 110, 116–118.CrossRefPubMedGoogle Scholar
  11. 11.
    Cattaneo E. and McKay R. (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347, 762–765.CrossRefPubMedGoogle Scholar
  12. 12.
    Mujtaba T., Mayer-Proschel M., and Rao M. S. (1998) A common neural progenitor for the CNS and PNS. Dev. Biol. 200, 1–15.CrossRefPubMedGoogle Scholar
  13. 13.
    Krum J. M. and Rosenstein J. M. (1999) Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds. Exp. Neurol. 160, 348–360.CrossRefPubMedGoogle Scholar
  14. 14.
    Namiki J. and Tator C. H. (1999) Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J. Neuropathol. Exp. Neurol. 58, 489–498.CrossRefPubMedGoogle Scholar
  15. 15.
    Pekny M., Johansson C. B., Eliasson C., et al. (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145, 503–514.CrossRefPubMedGoogle Scholar
  16. 16.
    Hockfield S. and McKay R. D. (1985) Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5, 3310–3328.PubMedGoogle Scholar
  17. 17.
    Messam C. A., Hou J., and Major E. O. (2000) Co-expression of nestin in neural and glial cells in the developing human CNS defined by a human specific anti-nestin antibody. Exp. Neurol. 161, 585–596.CrossRefPubMedGoogle Scholar
  18. 18.
    Andressen C., Stocker E., Klinz F. J., et al. (2001) Nestin-specific green fluorescent protein expression in embryonic stem cell-derived neural precursor cells used for transplantation. Stem Cells 19, 419–424.CrossRefPubMedGoogle Scholar
  19. 19.
    Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, vol. 1. CSH Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  20. 20.
    Sanger F., Nicklen S., and Coulson A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.CrossRefPubMedGoogle Scholar
  21. 21.
    Rathjen P. D., Nichols J., Toth S., Edwards D. R., Heath J. K., and Smith A. G. (1990) Developmentally programmed induction of differentiation inhibiting activity and the control of stem cell populations. Genes Dev. 4, 2308–2318.CrossRefPubMedGoogle Scholar
  22. 22.
    Qi X., Li T. G., Hao J., et al. (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc. Natl. Acad. Sci., USA 101, 6027–6032.CrossRefPubMedGoogle Scholar
  23. 23.
    Ying Q. L., Nichols J., Chambers I., and Smith A. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.CrossRefPubMedGoogle Scholar
  24. 24.
    Bain G., Kitchens D., Yao M., Huettner J. E., and Gottlieb D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.CrossRefPubMedGoogle Scholar
  25. 25.
    Wobus A. M., Wallukat G., and Hescheler J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182.CrossRefPubMedGoogle Scholar
  26. 26.
    Strubing C., Ahnert-Hilger G., Shan J., Wiedenmann B., Hescheler J., and Wobus A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.CrossRefPubMedGoogle Scholar
  27. 27.
    Chambon P. (1996) A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940–954.PubMedGoogle Scholar
  28. 28.
    Bain G., Ray W. J., Yao M., and Gottlieb D. I. (1996) Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem. Biophys. Res. Commun. 223, 691–694.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Nibedita Lenka
    • 1
  1. 1.National Center for Cell ScienceGaneshkhindPune, MaharashtraIndia

Personalised recommendations