Establishment of an ELISA for the Detection of Native Bovine Pregnancy-Associated Glycoproteins Secreted by Trophoblast Binucleate Cells

  • Jonathan A. Green
  • R. Michael Roberts
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 122)

Abstract

The pregnancy-associated glycoproteins (PAGs) are a large gene family expressed in trophoblast cells of ruminant ungulates. The detection of PAGs in maternal serum has served as the basis for pregnancy detection in ruminant ungulates and also for use as markers of trophoblast development and placental viability. The methods described provide a means for the rapid purification of bovine PAGs by affinity chromatography and the establishment of an enzyme-linked immunosorbent assay (ELISA) to measure PAG concentrations in maternal blood plasma and other biological fluids.

Key Words

Placenta trophoblast pregnancy pregnancy detection cattle 

References

  1. 1.
    Wooding, F. B. P. (1983) Frequency and localization of binucleate cells in the placentomes of ruminants. Placenta 4, 527–540.PubMedGoogle Scholar
  2. 2.
    Wooding, F. B. (1992) Current topic: the synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production. Placenta 13, 101–113.CrossRefPubMedGoogle Scholar
  3. 3.
    Wooding, F. B., Morgan G., Brandon M. R., and Camous S. (1994) Membrane dynamics during migration of placental cells through trophectodermal tight junctions in sheep and goats. Cell Tissue Res. 276, 387–397.CrossRefPubMedGoogle Scholar
  4. 4.
    Wooding, F. B., Morgan, G., and Adam, C. L. (1997) Structure and function in the ruminant synepitheliochorial placenta: central role of the trophoblast binucleate cell in deer. Microsc. Res. Tech. 38, 88–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Wooding, F. B. (1981) Localization of ovine placental lactogen in sheep placentomes by electron microscope immunocytochemistry. J. Reprod. Fertil. 62, 15–19.CrossRefPubMedGoogle Scholar
  6. 6.
    King, G. J., Atkinson, B. A., and Robertson, H. A. (1982) Implantation and early placentation in domestic ungulates. J. Reprod. Fertil. Suppl. 31, 17–30.PubMedGoogle Scholar
  7. 7.
    King, G. J., Atkinson, B. A., and Robertson, H. A. (1980) Development of the bovine placentome from days 20 to 29 of gestation. J. Reprod. Fertil. 59, 95–100.CrossRefPubMedGoogle Scholar
  8. 8.
    Xie, S. C., Low, B. G., Nagel, R. J., et al. (1991) Identification of the major pregnancy-specific antigens of cattle and sheep as inactive members of the aspartic proteinase family. Proc. Natl. Acad. Sci. USA 88, 10,247–10,251.CrossRefPubMedGoogle Scholar
  9. 9.
    Zoli, A. P., Demez, P., Beckers, J.-F., Reznik, M., and Beckers, A. (1992) Light and electron microscopic immunolocalization of bovine pregnancy-associated glycoprotein in the bovine placentome. Biol. Reprod. 46, 623–629.CrossRefPubMedGoogle Scholar
  10. 10.
    Sasser, R. G., Crock, J., and Ruder-Montgomery, C. A. (1989) Characteristics of pregnancy-specific protein B in cattle. J. Reprod. Fertil. Suppl. 37, 109–113.PubMedGoogle Scholar
  11. 11.
    Mialon, M. M., Renand, G., Camous, S., Martal, J., and Menissier, F. (1994) Detection of pregnancy by radioimmunoassay of a pregnancy serum protein (PSP60) in cattle. Reprod. Nutr. Dev. 34, 65–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Zoli, A. P., Guilbault, L. A., Delahaut, P., Ortiz, W. B., and Beckers, J.-F. (1992) Radioimmunoassay of a bovine pregnancy-associated glycoprotein in serum: its application for pregnancy diagnosis. Biol. Reprod. 46, 83–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Sasser, R. G., Ruder, C. A., Ivani, K. A., Butler, J. E., and Hamilton, W. C. (1986) Detection of pregnancy by radioimmunoassay of a novel pregnancy-specific protein in serum of cows and a profile of serum concentrations during gestation. Biol. Reprod. 35, 936–942.CrossRefPubMedGoogle Scholar
  14. 14.
    Wood, A. K., Short, R. E., Darling, A. E., Dusek, G. L., Sasser, R. G., and Ruder, C. A. (1986) Serum assays for detecting pregnancy in mule and white-tailed deer. J. Wild Manag. 50, 684–687.CrossRefGoogle Scholar
  15. 15.
    Willard, S. T., Sasser, R. G., Jaques, J. T., White, D. R., Neuendorff, D. A., and Randel, R. D. (1998) Early pregnancy detection and the hormonal characterization of embryonic-fetal mortality in fallow deer (Dama dama). Theriogenology 49, 861–869.CrossRefPubMedGoogle Scholar
  16. 16.
    Willard, J. M., White, D. R., Wesson, C. A., Stellflug, J., and Sasser, R. G. (1995) Detection of fetal twins in sheep using a radioimmunoassay for pregnancy-specific protein B. J. Anim. Sci. 73, 960–966.PubMedGoogle Scholar
  17. 17.
    Ropstad, E., Johansen, O., King, C., et al. (1999) Comparison of plasma progesterone, transrectal ultrasound and pregnancy specific proteins (PSPB) used for pregnancy diagnosis in reindeer. Acta Vet. Scand. 40, 151–162.PubMedGoogle Scholar
  18. 18.
    Houston, D., Robbins, C., Ruder, C., and Sasser, R. (1986) Pregnancy detection in mountain goats by assay for pregnancy-specific protein B. J. Wildlife Management 50, 740–742.CrossRefGoogle Scholar
  19. 19.
    Haigh, J., Gates, C., Ruder, C., and Sasser, R. (1991) Diagnosis of pregnancy in wood bison using a bovine assay for pregnancy-specific protein B. Theriogeneology 40, 905–3911.CrossRefGoogle Scholar
  20. 20.
    Haigh, J., Dalton, W., Ruder, C., and Sasser, R. (1993) Diagnosis of pregnancy in moose using a bovine assay for PSPB. Theriogeneology 40, 905–911.CrossRefGoogle Scholar
  21. 21.
    Ranilla, M., Sulon, J., Carro, M., Mantecon, A., and Beckers, J.-F. (1994) Plasmatic profiles of pregnancy-associated glycoprotein and progesterone levels during gestation in Churra and Merino sheep. Theriogenology 42, 537–545.CrossRefPubMedGoogle Scholar
  22. 22.
    Melo de Sousa, N., Zongo, M., Pitala, W., et al. (2002) Pregnancy-associated glycoprotein concentrations during pregnancy and the postpartum period in azawak zebu cattle. Theriogenology 59, 1131–42.Google Scholar
  23. 23.
    Garbayo, J. M., Green, J. A., Mannekin, M., et al. (2000) Caprine pregnancyassociated glycoproteins (PAG): their cloning, expression and evolutionary relationship to other PAG. Mol. Reprod. Dev. 57, 311–322.CrossRefPubMedGoogle Scholar
  24. 24.
    Green, J.A., Xie, S., Quan, X., et al. (2000) Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy. Biol. Reprod. 62, 1624–1631.CrossRefPubMedGoogle Scholar
  25. 25.
    Xie, S., Green, J., Bixby, J. B., et al. (1997) The diversity and evolutionary relationships of the pregnancy-associated glycoproteins, an aspartic proteinase subfamily consisting of many trophoblast-expressed genes. Proc. Natl. Acad. Sci. USA 94, 12,809–12,816.CrossRefPubMedGoogle Scholar
  26. 26.
    Guruprasad, K., Blundell, T. L., Xie, S., et al. (1996) Comparative modeling and analysis of amino acid substitutions suggests that the family of pregnancy-associated glycoproteins includes both active and inactive aspartic proteinases. Protein Eng. 9, 849–856.CrossRefPubMedGoogle Scholar
  27. 27.
    Landon, L. A., McLain, A., Roberts, R. M., and Green, J. A. (1999) Rapid fractionation of pregnancy-associated glycoproteins in placental extracts. Biol. Reprod. 60, 492.Google Scholar
  28. 28.
    Hughes, A. L., Green, J. A., Garbayo, J. M., and Roberts, R. M. (2000) Adaptive diversification within a large family of recently duplicated, placentally-expressed genes. Proc. Natl. Acad. Sci. USA 97, 3319–3323.CrossRefPubMedGoogle Scholar
  29. 29.
    Harlow, E. and Lane, D. (eds.) (1988) Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Jonathan A. Green
    • 1
  • R. Michael Roberts
    • 2
  1. 1.Department of Animal ScienceUniversity of Missouri-ColumbiaColumbia
  2. 2.Life Sciences CenterUniversity of Missouri-ColumbiaColumbia

Personalised recommendations